Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

rerank_model.py 12KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import re
  17. import threading
  18. from urllib.parse import urljoin
  19. import requests
  20. from huggingface_hub import snapshot_download
  21. import os
  22. from abc import ABC
  23. import numpy as np
  24. from api.settings import LIGHTEN
  25. from api.utils.file_utils import get_home_cache_dir
  26. from rag.utils import num_tokens_from_string, truncate
  27. import json
  28. def sigmoid(x):
  29. return 1 / (1 + np.exp(-x))
  30. class Base(ABC):
  31. def __init__(self, key, model_name):
  32. pass
  33. def similarity(self, query: str, texts: list):
  34. raise NotImplementedError("Please implement encode method!")
  35. class DefaultRerank(Base):
  36. _model = None
  37. _model_lock = threading.Lock()
  38. def __init__(self, key, model_name, **kwargs):
  39. """
  40. If you have trouble downloading HuggingFace models, -_^ this might help!!
  41. For Linux:
  42. export HF_ENDPOINT=https://hf-mirror.com
  43. For Windows:
  44. Good luck
  45. ^_-
  46. """
  47. if not LIGHTEN and not DefaultRerank._model:
  48. import torch
  49. from FlagEmbedding import FlagReranker
  50. with DefaultRerank._model_lock:
  51. if not DefaultRerank._model:
  52. try:
  53. DefaultRerank._model = FlagReranker(
  54. os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)),
  55. use_fp16=torch.cuda.is_available())
  56. except Exception as e:
  57. model_dir = snapshot_download(repo_id=model_name,
  58. local_dir=os.path.join(get_home_cache_dir(),
  59. re.sub(r"^[a-zA-Z]+/", "", model_name)),
  60. local_dir_use_symlinks=False)
  61. DefaultRerank._model = FlagReranker(model_dir, use_fp16=torch.cuda.is_available())
  62. self._model = DefaultRerank._model
  63. def similarity(self, query: str, texts: list):
  64. pairs = [(query, truncate(t, 2048)) for t in texts]
  65. token_count = 0
  66. for _, t in pairs:
  67. token_count += num_tokens_from_string(t)
  68. batch_size = 4096
  69. res = []
  70. for i in range(0, len(pairs), batch_size):
  71. scores = self._model.compute_score(pairs[i:i + batch_size], max_length=2048)
  72. scores = sigmoid(np.array(scores)).tolist()
  73. if isinstance(scores, float):
  74. res.append(scores)
  75. else:
  76. res.extend(scores)
  77. return np.array(res), token_count
  78. class JinaRerank(Base):
  79. def __init__(self, key, model_name="jina-reranker-v1-base-en",
  80. base_url="https://api.jina.ai/v1/rerank"):
  81. self.base_url = "https://api.jina.ai/v1/rerank"
  82. self.headers = {
  83. "Content-Type": "application/json",
  84. "Authorization": f"Bearer {key}"
  85. }
  86. self.model_name = model_name
  87. def similarity(self, query: str, texts: list):
  88. texts = [truncate(t, 8196) for t in texts]
  89. data = {
  90. "model": self.model_name,
  91. "query": query,
  92. "documents": texts,
  93. "top_n": len(texts)
  94. }
  95. res = requests.post(self.base_url, headers=self.headers, json=data).json()
  96. rank = np.zeros(len(texts), dtype=float)
  97. for d in res["results"]:
  98. rank[d["index"]] = d["relevance_score"]
  99. return rank, res["usage"]["total_tokens"]
  100. class YoudaoRerank(DefaultRerank):
  101. _model = None
  102. _model_lock = threading.Lock()
  103. def __init__(self, key=None, model_name="maidalun1020/bce-reranker-base_v1", **kwargs):
  104. if not LIGHTEN and not YoudaoRerank._model:
  105. from BCEmbedding import RerankerModel
  106. with YoudaoRerank._model_lock:
  107. if not YoudaoRerank._model:
  108. try:
  109. print("LOADING BCE...")
  110. YoudaoRerank._model = RerankerModel(model_name_or_path=os.path.join(
  111. get_home_cache_dir(),
  112. re.sub(r"^[a-zA-Z]+/", "", model_name)))
  113. except Exception as e:
  114. YoudaoRerank._model = RerankerModel(
  115. model_name_or_path=model_name.replace(
  116. "maidalun1020", "InfiniFlow"))
  117. self._model = YoudaoRerank._model
  118. def similarity(self, query: str, texts: list):
  119. pairs = [(query, truncate(t, self._model.max_length)) for t in texts]
  120. token_count = 0
  121. for _, t in pairs:
  122. token_count += num_tokens_from_string(t)
  123. batch_size = 8
  124. res = []
  125. for i in range(0, len(pairs), batch_size):
  126. scores = self._model.compute_score(pairs[i:i + batch_size], max_length=self._model.max_length)
  127. scores = sigmoid(np.array(scores)).tolist()
  128. if isinstance(scores, float):
  129. res.append(scores)
  130. else:
  131. res.extend(scores)
  132. return np.array(res), token_count
  133. class XInferenceRerank(Base):
  134. def __init__(self, key="xxxxxxx", model_name="", base_url=""):
  135. if base_url.find("/v1") == -1:
  136. base_url = urljoin(base_url, "/v1/rerank")
  137. self.model_name = model_name
  138. self.base_url = base_url
  139. self.headers = {
  140. "Content-Type": "application/json",
  141. "accept": "application/json"
  142. }
  143. def similarity(self, query: str, texts: list):
  144. if len(texts) == 0:
  145. return np.array([]), 0
  146. data = {
  147. "model": self.model_name,
  148. "query": query,
  149. "return_documents": "true",
  150. "return_len": "true",
  151. "documents": texts
  152. }
  153. res = requests.post(self.base_url, headers=self.headers, json=data).json()
  154. rank = np.zeros(len(texts), dtype=float)
  155. for d in res["results"]:
  156. rank[d["index"]] = d["relevance_score"]
  157. return rank, res["meta"]["tokens"]["input_tokens"] + res["meta"]["tokens"]["output_tokens"]
  158. class LocalAIRerank(Base):
  159. def __init__(self, key, model_name, base_url):
  160. pass
  161. def similarity(self, query: str, texts: list):
  162. raise NotImplementedError("The LocalAIRerank has not been implement")
  163. class NvidiaRerank(Base):
  164. def __init__(
  165. self, key, model_name, base_url="https://ai.api.nvidia.com/v1/retrieval/nvidia/"
  166. ):
  167. if not base_url:
  168. base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/"
  169. self.model_name = model_name
  170. if self.model_name == "nvidia/nv-rerankqa-mistral-4b-v3":
  171. self.base_url = os.path.join(
  172. base_url, "nv-rerankqa-mistral-4b-v3", "reranking"
  173. )
  174. if self.model_name == "nvidia/rerank-qa-mistral-4b":
  175. self.base_url = os.path.join(base_url, "reranking")
  176. self.model_name = "nv-rerank-qa-mistral-4b:1"
  177. self.headers = {
  178. "accept": "application/json",
  179. "Content-Type": "application/json",
  180. "Authorization": f"Bearer {key}",
  181. }
  182. def similarity(self, query: str, texts: list):
  183. token_count = num_tokens_from_string(query) + sum(
  184. [num_tokens_from_string(t) for t in texts]
  185. )
  186. data = {
  187. "model": self.model_name,
  188. "query": {"text": query},
  189. "passages": [{"text": text} for text in texts],
  190. "truncate": "END",
  191. "top_n": len(texts),
  192. }
  193. res = requests.post(self.base_url, headers=self.headers, json=data).json()
  194. rank = np.zeros(len(texts), dtype=float)
  195. for d in res["rankings"]:
  196. rank[d["index"]] = d["logit"]
  197. return rank, token_count
  198. class LmStudioRerank(Base):
  199. def __init__(self, key, model_name, base_url):
  200. pass
  201. def similarity(self, query: str, texts: list):
  202. raise NotImplementedError("The LmStudioRerank has not been implement")
  203. class OpenAI_APIRerank(Base):
  204. def __init__(self, key, model_name, base_url):
  205. pass
  206. def similarity(self, query: str, texts: list):
  207. raise NotImplementedError("The api has not been implement")
  208. class CoHereRerank(Base):
  209. def __init__(self, key, model_name, base_url=None):
  210. from cohere import Client
  211. self.client = Client(api_key=key)
  212. self.model_name = model_name
  213. def similarity(self, query: str, texts: list):
  214. token_count = num_tokens_from_string(query) + sum(
  215. [num_tokens_from_string(t) for t in texts]
  216. )
  217. res = self.client.rerank(
  218. model=self.model_name,
  219. query=query,
  220. documents=texts,
  221. top_n=len(texts),
  222. return_documents=False,
  223. )
  224. rank = np.zeros(len(texts), dtype=float)
  225. for d in res.results:
  226. rank[d.index] = d.relevance_score
  227. return rank, token_count
  228. class TogetherAIRerank(Base):
  229. def __init__(self, key, model_name, base_url):
  230. pass
  231. def similarity(self, query: str, texts: list):
  232. raise NotImplementedError("The api has not been implement")
  233. class SILICONFLOWRerank(Base):
  234. def __init__(
  235. self, key, model_name, base_url="https://api.siliconflow.cn/v1/rerank"
  236. ):
  237. if not base_url:
  238. base_url = "https://api.siliconflow.cn/v1/rerank"
  239. self.model_name = model_name
  240. self.base_url = base_url
  241. self.headers = {
  242. "accept": "application/json",
  243. "content-type": "application/json",
  244. "authorization": f"Bearer {key}",
  245. }
  246. def similarity(self, query: str, texts: list):
  247. payload = {
  248. "model": self.model_name,
  249. "query": query,
  250. "documents": texts,
  251. "top_n": len(texts),
  252. "return_documents": False,
  253. "max_chunks_per_doc": 1024,
  254. "overlap_tokens": 80,
  255. }
  256. response = requests.post(
  257. self.base_url, json=payload, headers=self.headers
  258. ).json()
  259. rank = np.zeros(len(texts), dtype=float)
  260. for d in response["results"]:
  261. rank[d["index"]] = d["relevance_score"]
  262. return (
  263. rank,
  264. response["meta"]["tokens"]["input_tokens"] + response["meta"]["tokens"]["output_tokens"],
  265. )
  266. class BaiduYiyanRerank(Base):
  267. def __init__(self, key, model_name, base_url=None):
  268. from qianfan.resources import Reranker
  269. key = json.loads(key)
  270. ak = key.get("yiyan_ak", "")
  271. sk = key.get("yiyan_sk", "")
  272. self.client = Reranker(ak=ak, sk=sk)
  273. self.model_name = model_name
  274. def similarity(self, query: str, texts: list):
  275. res = self.client.do(
  276. model=self.model_name,
  277. query=query,
  278. documents=texts,
  279. top_n=len(texts),
  280. ).body
  281. rank = np.zeros(len(texts), dtype=float)
  282. for d in res["results"]:
  283. rank[d["index"]] = d["relevance_score"]
  284. return rank, res["usage"]["total_tokens"]
  285. class VoyageRerank(Base):
  286. def __init__(self, key, model_name, base_url=None):
  287. import voyageai
  288. self.client = voyageai.Client(api_key=key)
  289. self.model_name = model_name
  290. def similarity(self, query: str, texts: list):
  291. res = self.client.rerank(
  292. query=query, documents=texts, model=self.model_name, top_k=len(texts)
  293. )
  294. rank = np.zeros(len(texts), dtype=float)
  295. for r in res.results:
  296. rank[r.index] = r.relevance_score
  297. return rank, res.total_tokens