| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import datetime
- import json
- import logging
- import os
- import hashlib
- import copy
- import re
- import sys
- from functools import partial
- from timeit import default_timer as timer
-
- from elasticsearch_dsl import Q
-
- from api.db.services.task_service import TaskService
- from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
- from rag.utils import ELASTICSEARCH
- from rag.utils import MINIO
- from rag.utils import rmSpace, findMaxTm
-
- from rag.nlp import search
- from io import BytesIO
- import pandas as pd
-
- from rag.app import laws, paper, presentation, manual, qa, table, book, resume
-
- from api.db import LLMType, ParserType
- from api.db.services.document_service import DocumentService
- from api.db.services.llm_service import LLMBundle
- from api.settings import database_logger
- from api.utils.file_utils import get_project_base_directory
-
- BATCH_SIZE = 64
-
- FACTORY = {
- ParserType.GENERAL.value: laws,
- ParserType.PAPER.value: paper,
- ParserType.BOOK.value: book,
- ParserType.PRESENTATION.value: presentation,
- ParserType.MANUAL.value: manual,
- ParserType.LAWS.value: laws,
- ParserType.QA.value: qa,
- ParserType.TABLE.value: table,
- ParserType.RESUME.value: resume,
- }
-
-
- def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
- cancel = TaskService.do_cancel(task_id)
- if cancel:
- msg += " [Canceled]"
- prog = -1
-
- if to_page > 0: msg = f"Page({from_page}~{to_page}): " + msg
- d = {"progress_msg": msg}
- if prog is not None: d["progress"] = prog
- try:
- TaskService.update_progress(task_id, d)
- except Exception as e:
- cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))
-
- if cancel:sys.exit()
-
-
- """
- def chuck_doc(name, binary, tenant_id, cvmdl=None):
- suff = os.path.split(name)[-1].lower().split(".")[-1]
- if suff.find("pdf") >= 0:
- return PDF(binary)
- if suff.find("doc") >= 0:
- return DOC(binary)
- if re.match(r"(xlsx|xlsm|xltx|xltm)", suff):
- return EXC(binary)
- if suff.find("ppt") >= 0:
- return PPT(binary)
- if cvmdl and re.search(r"\.(jpg|jpeg|png|tif|gif|pcx|tga|exif|fpx|svg|psd|cdr|pcd|dxf|ufo|eps|ai|raw|WMF|webp|avif|apng|icon|ico)$",
- name.lower()):
- txt = cvmdl.describe(binary)
- field = TextChunker.Fields()
- field.text_chunks = [(txt, binary)]
- field.table_chunks = []
- return field
-
- return TextChunker()(binary)
- """
-
-
- def collect(comm, mod, tm):
- tasks = TaskService.get_tasks(tm, mod, comm)
- if len(tasks) == 0:
- return pd.DataFrame()
- tasks = pd.DataFrame(tasks)
- mtm = tasks["update_time"].max()
- cron_logger.info("TOTAL:{}, To:{}".format(len(tasks), mtm))
- return tasks
-
-
- def build(row, cvmdl):
- if row["size"] > DOC_MAXIMUM_SIZE:
- set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
- (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
- return []
-
- callback = partial(set_progress, row["id"], row["from_page"], row["to_page"])
- chunker = FACTORY[row["parser_id"].lower()]
- try:
- cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
- cks = chunker.chunk(row["name"], MINIO.get(row["kb_id"], row["location"]), row["from_page"], row["to_page"],
- callback, kb_id=row["kb_id"], parser_config=row["parser_config"])
- except Exception as e:
- if re.search("(No such file|not found)", str(e)):
- callback(-1, "Can not find file <%s>" % row["doc_name"])
- else:
- callback(-1, f"Internal server error: %s" % str(e).replace("'", ""))
-
- cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
-
- return []
-
- callback(msg="Finished slicing files. Start to embedding the content.")
-
- docs = []
- doc = {
- "doc_id": row["doc_id"],
- "kb_id": [str(row["kb_id"])]
- }
- for ck in cks:
- d = copy.deepcopy(doc)
- d.update(ck)
- md5 = hashlib.md5()
- md5.update((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8"))
- d["_id"] = md5.hexdigest()
- d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
- d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
- if not d.get("image"):
- docs.append(d)
- continue
-
- output_buffer = BytesIO()
- if isinstance(d["image"], bytes):
- output_buffer = BytesIO(d["image"])
- else:
- d["image"].save(output_buffer, format='JPEG')
-
- MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
- d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
- del d["image"]
- docs.append(d)
-
- return docs
-
-
- def init_kb(row):
- idxnm = search.index_name(row["tenant_id"])
- if ELASTICSEARCH.indexExist(idxnm):
- return
- return ELASTICSEARCH.createIdx(idxnm, json.load(
- open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
-
-
- def embedding(docs, mdl, parser_config={}):
- tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [d["content_with_weight"] for d in docs]
- tk_count = 0
- if len(tts) == len(cnts):
- tts, c = mdl.encode(tts)
- tk_count += c
-
- cnts, c = mdl.encode(cnts)
- tk_count += c
- title_w = float(parser_config.get("filename_embd_weight", 0.1))
- vects = (title_w * tts + (1-title_w) * cnts) if len(tts) == len(cnts) else cnts
-
- assert len(vects) == len(docs)
- for i, d in enumerate(docs):
- v = vects[i].tolist()
- d["q_%d_vec" % len(v)] = v
- return tk_count
-
-
- def main(comm, mod):
- tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"{comm}-{mod}.tm")
- tm = findMaxTm(tm_fnm)
- rows = collect(comm, mod, tm)
- if len(rows) == 0:
- return
-
- tmf = open(tm_fnm, "a+")
- for _, r in rows.iterrows():
- callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
- try:
- embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING)
- cv_mdl = LLMBundle(r["tenant_id"], LLMType.IMAGE2TEXT)
- # TODO: sequence2text model
- except Exception as e:
- callback(prog=-1, msg=str(e))
- continue
-
- st_tm = timer()
- cks = build(r, cv_mdl)
- if not cks:
- tmf.write(str(r["update_time"]) + "\n")
- callback(1., "No chunk! Done!")
- continue
- # TODO: exception handler
- ## set_progress(r["did"], -1, "ERROR: ")
- try:
- tk_count = embedding(cks, embd_mdl, r["parser_config"])
- except Exception as e:
- callback(-1, "Embedding error:{}".format(str(e)))
- cron_logger.error(str(e))
-
- callback(msg="Finished embedding! Start to build index!")
- init_kb(r)
- chunk_count = len(set([c["_id"] for c in cks]))
- es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
- if es_r:
- callback(-1, "Index failure!")
- cron_logger.error(str(es_r))
- else:
- if TaskService.do_cancel(r["id"]):
- ELASTICSEARCH.deleteByQuery(Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
- continue
- callback(1., "Done!")
- DocumentService.increment_chunk_num(r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
- cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
-
- tmf.write(str(r["update_time"]) + "\n")
- tmf.close()
-
-
- if __name__ == "__main__":
- peewee_logger = logging.getLogger('peewee')
- peewee_logger.propagate = False
- peewee_logger.addHandler(database_logger.handlers[0])
- peewee_logger.setLevel(database_logger.level)
-
- from mpi4py import MPI
-
- comm = MPI.COMM_WORLD
- main(comm.Get_size(), comm.Get_rank())
|