Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

chunk_app.py 16KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import datetime
  17. import json
  18. import re
  19. import xxhash
  20. from flask import request
  21. from flask_login import current_user, login_required
  22. from api import settings
  23. from api.db import LLMType, ParserType
  24. from api.db.services.document_service import DocumentService
  25. from api.db.services.knowledgebase_service import KnowledgebaseService
  26. from api.db.services.llm_service import LLMBundle
  27. from api.db.services.user_service import UserTenantService
  28. from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
  29. from rag.app.qa import beAdoc, rmPrefix
  30. from rag.app.tag import label_question
  31. from rag.nlp import rag_tokenizer, search
  32. from rag.prompts import cross_languages, keyword_extraction
  33. from rag.settings import PAGERANK_FLD
  34. from rag.utils import rmSpace
  35. @manager.route('/list', methods=['POST']) # noqa: F821
  36. @login_required
  37. @validate_request("doc_id")
  38. def list_chunk():
  39. req = request.json
  40. doc_id = req["doc_id"]
  41. page = int(req.get("page", 1))
  42. size = int(req.get("size", 30))
  43. question = req.get("keywords", "")
  44. try:
  45. tenant_id = DocumentService.get_tenant_id(req["doc_id"])
  46. if not tenant_id:
  47. return get_data_error_result(message="Tenant not found!")
  48. e, doc = DocumentService.get_by_id(doc_id)
  49. if not e:
  50. return get_data_error_result(message="Document not found!")
  51. kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
  52. query = {
  53. "doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
  54. }
  55. if "available_int" in req:
  56. query["available_int"] = int(req["available_int"])
  57. sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
  58. res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
  59. for id in sres.ids:
  60. d = {
  61. "chunk_id": id,
  62. "content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
  63. id].get(
  64. "content_with_weight", ""),
  65. "doc_id": sres.field[id]["doc_id"],
  66. "docnm_kwd": sres.field[id]["docnm_kwd"],
  67. "important_kwd": sres.field[id].get("important_kwd", []),
  68. "question_kwd": sres.field[id].get("question_kwd", []),
  69. "image_id": sres.field[id].get("img_id", ""),
  70. "available_int": int(sres.field[id].get("available_int", 1)),
  71. "positions": sres.field[id].get("position_int", []),
  72. }
  73. assert isinstance(d["positions"], list)
  74. assert len(d["positions"]) == 0 or (isinstance(d["positions"][0], list) and len(d["positions"][0]) == 5)
  75. res["chunks"].append(d)
  76. return get_json_result(data=res)
  77. except Exception as e:
  78. if str(e).find("not_found") > 0:
  79. return get_json_result(data=False, message='No chunk found!',
  80. code=settings.RetCode.DATA_ERROR)
  81. return server_error_response(e)
  82. @manager.route('/get', methods=['GET']) # noqa: F821
  83. @login_required
  84. def get():
  85. chunk_id = request.args["chunk_id"]
  86. try:
  87. tenants = UserTenantService.query(user_id=current_user.id)
  88. if not tenants:
  89. return get_data_error_result(message="Tenant not found!")
  90. for tenant in tenants:
  91. kb_ids = KnowledgebaseService.get_kb_ids(tenant.tenant_id)
  92. chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant.tenant_id), kb_ids)
  93. if chunk:
  94. break
  95. if chunk is None:
  96. return server_error_response(Exception("Chunk not found"))
  97. k = []
  98. for n in chunk.keys():
  99. if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
  100. k.append(n)
  101. for n in k:
  102. del chunk[n]
  103. return get_json_result(data=chunk)
  104. except Exception as e:
  105. if str(e).find("NotFoundError") >= 0:
  106. return get_json_result(data=False, message='Chunk not found!',
  107. code=settings.RetCode.DATA_ERROR)
  108. return server_error_response(e)
  109. @manager.route('/set', methods=['POST']) # noqa: F821
  110. @login_required
  111. @validate_request("doc_id", "chunk_id", "content_with_weight")
  112. def set():
  113. req = request.json
  114. d = {
  115. "id": req["chunk_id"],
  116. "content_with_weight": req["content_with_weight"]}
  117. d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
  118. d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
  119. if "important_kwd" in req:
  120. if not isinstance(req["important_kwd"], list):
  121. return get_data_error_result(message="`important_kwd` should be a list")
  122. d["important_kwd"] = req["important_kwd"]
  123. d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
  124. if "question_kwd" in req:
  125. if not isinstance(req["question_kwd"], list):
  126. return get_data_error_result(message="`question_kwd` should be a list")
  127. d["question_kwd"] = req["question_kwd"]
  128. d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
  129. if "tag_kwd" in req:
  130. d["tag_kwd"] = req["tag_kwd"]
  131. if "tag_feas" in req:
  132. d["tag_feas"] = req["tag_feas"]
  133. if "available_int" in req:
  134. d["available_int"] = req["available_int"]
  135. try:
  136. tenant_id = DocumentService.get_tenant_id(req["doc_id"])
  137. if not tenant_id:
  138. return get_data_error_result(message="Tenant not found!")
  139. embd_id = DocumentService.get_embd_id(req["doc_id"])
  140. embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
  141. e, doc = DocumentService.get_by_id(req["doc_id"])
  142. if not e:
  143. return get_data_error_result(message="Document not found!")
  144. if doc.parser_id == ParserType.QA:
  145. arr = [
  146. t for t in re.split(
  147. r"[\n\t]",
  148. req["content_with_weight"]) if len(t) > 1]
  149. q, a = rmPrefix(arr[0]), rmPrefix("\n".join(arr[1:]))
  150. d = beAdoc(d, q, a, not any(
  151. [rag_tokenizer.is_chinese(t) for t in q + a]))
  152. v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
  153. v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
  154. d["q_%d_vec" % len(v)] = v.tolist()
  155. settings.docStoreConn.update({"id": req["chunk_id"]}, d, search.index_name(tenant_id), doc.kb_id)
  156. return get_json_result(data=True)
  157. except Exception as e:
  158. return server_error_response(e)
  159. @manager.route('/switch', methods=['POST']) # noqa: F821
  160. @login_required
  161. @validate_request("chunk_ids", "available_int", "doc_id")
  162. def switch():
  163. req = request.json
  164. try:
  165. e, doc = DocumentService.get_by_id(req["doc_id"])
  166. if not e:
  167. return get_data_error_result(message="Document not found!")
  168. for cid in req["chunk_ids"]:
  169. if not settings.docStoreConn.update({"id": cid},
  170. {"available_int": int(req["available_int"])},
  171. search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
  172. doc.kb_id):
  173. return get_data_error_result(message="Index updating failure")
  174. return get_json_result(data=True)
  175. except Exception as e:
  176. return server_error_response(e)
  177. @manager.route('/rm', methods=['POST']) # noqa: F821
  178. @login_required
  179. @validate_request("chunk_ids", "doc_id")
  180. def rm():
  181. from rag.utils.storage_factory import STORAGE_IMPL
  182. req = request.json
  183. try:
  184. e, doc = DocumentService.get_by_id(req["doc_id"])
  185. if not e:
  186. return get_data_error_result(message="Document not found!")
  187. if not settings.docStoreConn.delete({"id": req["chunk_ids"]},
  188. search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
  189. doc.kb_id):
  190. return get_data_error_result(message="Chunk deleting failure")
  191. deleted_chunk_ids = req["chunk_ids"]
  192. chunk_number = len(deleted_chunk_ids)
  193. DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
  194. for cid in deleted_chunk_ids:
  195. if STORAGE_IMPL.obj_exist(doc.kb_id, cid):
  196. STORAGE_IMPL.rm(doc.kb_id, cid)
  197. return get_json_result(data=True)
  198. except Exception as e:
  199. return server_error_response(e)
  200. @manager.route('/create', methods=['POST']) # noqa: F821
  201. @login_required
  202. @validate_request("doc_id", "content_with_weight")
  203. def create():
  204. req = request.json
  205. chunck_id = xxhash.xxh64((req["content_with_weight"] + req["doc_id"]).encode("utf-8")).hexdigest()
  206. d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]),
  207. "content_with_weight": req["content_with_weight"]}
  208. d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
  209. d["important_kwd"] = req.get("important_kwd", [])
  210. if not isinstance(d["important_kwd"], list):
  211. return get_data_error_result(message="`important_kwd` is required to be a list")
  212. d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
  213. d["question_kwd"] = req.get("question_kwd", [])
  214. if not isinstance(d["question_kwd"], list):
  215. return get_data_error_result(message="`question_kwd` is required to be a list")
  216. d["question_tks"] = rag_tokenizer.tokenize("\n".join(d["question_kwd"]))
  217. d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
  218. d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
  219. if "tag_feas" in req:
  220. d["tag_feas"] = req["tag_feas"]
  221. if "tag_feas" in req:
  222. d["tag_feas"] = req["tag_feas"]
  223. try:
  224. e, doc = DocumentService.get_by_id(req["doc_id"])
  225. if not e:
  226. return get_data_error_result(message="Document not found!")
  227. d["kb_id"] = [doc.kb_id]
  228. d["docnm_kwd"] = doc.name
  229. d["title_tks"] = rag_tokenizer.tokenize(doc.name)
  230. d["doc_id"] = doc.id
  231. tenant_id = DocumentService.get_tenant_id(req["doc_id"])
  232. if not tenant_id:
  233. return get_data_error_result(message="Tenant not found!")
  234. e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
  235. if not e:
  236. return get_data_error_result(message="Knowledgebase not found!")
  237. if kb.pagerank:
  238. d[PAGERANK_FLD] = kb.pagerank
  239. embd_id = DocumentService.get_embd_id(req["doc_id"])
  240. embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
  241. v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
  242. v = 0.1 * v[0] + 0.9 * v[1]
  243. d["q_%d_vec" % len(v)] = v.tolist()
  244. settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
  245. DocumentService.increment_chunk_num(
  246. doc.id, doc.kb_id, c, 1, 0)
  247. return get_json_result(data={"chunk_id": chunck_id})
  248. except Exception as e:
  249. return server_error_response(e)
  250. @manager.route('/retrieval_test', methods=['POST']) # noqa: F821
  251. @login_required
  252. @validate_request("kb_id", "question")
  253. def retrieval_test():
  254. req = request.json
  255. page = int(req.get("page", 1))
  256. size = int(req.get("size", 30))
  257. question = req["question"]
  258. kb_ids = req["kb_id"]
  259. if isinstance(kb_ids, str):
  260. kb_ids = [kb_ids]
  261. doc_ids = req.get("doc_ids", [])
  262. similarity_threshold = float(req.get("similarity_threshold", 0.0))
  263. vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
  264. use_kg = req.get("use_kg", False)
  265. top = int(req.get("top_k", 1024))
  266. langs = req.get("cross_languages", [])
  267. tenant_ids = []
  268. try:
  269. tenants = UserTenantService.query(user_id=current_user.id)
  270. for kb_id in kb_ids:
  271. for tenant in tenants:
  272. if KnowledgebaseService.query(
  273. tenant_id=tenant.tenant_id, id=kb_id):
  274. tenant_ids.append(tenant.tenant_id)
  275. break
  276. else:
  277. return get_json_result(
  278. data=False, message='Only owner of knowledgebase authorized for this operation.',
  279. code=settings.RetCode.OPERATING_ERROR)
  280. e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
  281. if not e:
  282. return get_data_error_result(message="Knowledgebase not found!")
  283. if langs:
  284. question = cross_languages(kb.tenant_id, None, question, langs)
  285. embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
  286. rerank_mdl = None
  287. if req.get("rerank_id"):
  288. rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
  289. if req.get("keyword", False):
  290. chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
  291. question += keyword_extraction(chat_mdl, question)
  292. labels = label_question(question, [kb])
  293. ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
  294. similarity_threshold, vector_similarity_weight, top,
  295. doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
  296. rank_feature=labels
  297. )
  298. if use_kg:
  299. ck = settings.kg_retrievaler.retrieval(question,
  300. tenant_ids,
  301. kb_ids,
  302. embd_mdl,
  303. LLMBundle(kb.tenant_id, LLMType.CHAT))
  304. if ck["content_with_weight"]:
  305. ranks["chunks"].insert(0, ck)
  306. for c in ranks["chunks"]:
  307. c.pop("vector", None)
  308. ranks["labels"] = labels
  309. return get_json_result(data=ranks)
  310. except Exception as e:
  311. if str(e).find("not_found") > 0:
  312. return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
  313. code=settings.RetCode.DATA_ERROR)
  314. return server_error_response(e)
  315. @manager.route('/knowledge_graph', methods=['GET']) # noqa: F821
  316. @login_required
  317. def knowledge_graph():
  318. doc_id = request.args["doc_id"]
  319. tenant_id = DocumentService.get_tenant_id(doc_id)
  320. kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
  321. req = {
  322. "doc_ids": [doc_id],
  323. "knowledge_graph_kwd": ["graph", "mind_map"]
  324. }
  325. sres = settings.retrievaler.search(req, search.index_name(tenant_id), kb_ids)
  326. obj = {"graph": {}, "mind_map": {}}
  327. for id in sres.ids[:2]:
  328. ty = sres.field[id]["knowledge_graph_kwd"]
  329. try:
  330. content_json = json.loads(sres.field[id]["content_with_weight"])
  331. except Exception:
  332. continue
  333. if ty == 'mind_map':
  334. node_dict = {}
  335. def repeat_deal(content_json, node_dict):
  336. if 'id' in content_json:
  337. if content_json['id'] in node_dict:
  338. node_name = content_json['id']
  339. content_json['id'] += f"({node_dict[content_json['id']]})"
  340. node_dict[node_name] += 1
  341. else:
  342. node_dict[content_json['id']] = 1
  343. if 'children' in content_json and content_json['children']:
  344. for item in content_json['children']:
  345. repeat_deal(item, node_dict)
  346. repeat_deal(content_json, node_dict)
  347. obj[ty] = content_json
  348. return get_json_result(data=obj)