| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import re
 - from typing import Optional
 - import  threading
 - import requests
 - from huggingface_hub import snapshot_download
 - from openai.lib.azure import AzureOpenAI
 - from zhipuai import ZhipuAI
 - import os
 - from abc import ABC
 - from ollama import Client
 - import dashscope
 - from openai import OpenAI
 - from FlagEmbedding import FlagModel
 - import torch
 - import numpy as np
 - import asyncio
 - from api.utils.file_utils import get_home_cache_dir
 - from rag.utils import num_tokens_from_string, truncate
 - import google.generativeai as genai 
 - 
 - class Base(ABC):
 -     def __init__(self, key, model_name):
 -         pass
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         raise NotImplementedError("Please implement encode method!")
 - 
 -     def encode_queries(self, text: str):
 -         raise NotImplementedError("Please implement encode method!")
 - 
 - 
 - class DefaultEmbedding(Base):
 -     _model = None
 -     _model_lock = threading.Lock()
 -     def __init__(self, key, model_name, **kwargs):
 -         """
 -         If you have trouble downloading HuggingFace models, -_^ this might help!!
 - 
 -         For Linux:
 -         export HF_ENDPOINT=https://hf-mirror.com
 - 
 -         For Windows:
 -         Good luck
 -         ^_-
 - 
 -         """
 -         if not DefaultEmbedding._model:
 -             with DefaultEmbedding._model_lock:
 -                 if not DefaultEmbedding._model:
 -                     try:
 -                         DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)),
 -                                                             query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
 -                                                             use_fp16=torch.cuda.is_available())
 -                     except Exception as e:
 -                         model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
 -                                                       local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)),
 -                                                       local_dir_use_symlinks=False)
 -                         DefaultEmbedding._model = FlagModel(model_dir,
 -                                                             query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
 -                                                             use_fp16=torch.cuda.is_available())
 -         self._model = DefaultEmbedding._model
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         texts = [truncate(t, 2048) for t in texts]
 -         token_count = 0
 -         for t in texts:
 -             token_count += num_tokens_from_string(t)
 -         res = []
 -         for i in range(0, len(texts), batch_size):
 -             res.extend(self._model.encode(texts[i:i + batch_size]).tolist())
 -         return np.array(res), token_count
 - 
 -     def encode_queries(self, text: str):
 -         token_count = num_tokens_from_string(text)
 -         return self._model.encode_queries([text]).tolist()[0], token_count
 - 
 - 
 - class OpenAIEmbed(Base):
 -     def __init__(self, key, model_name="text-embedding-ada-002",
 -                  base_url="https://api.openai.com/v1"):
 -         if not base_url:
 -             base_url = "https://api.openai.com/v1"
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         texts = [truncate(t, 8196) for t in texts]
 -         res = self.client.embeddings.create(input=texts,
 -                                             model=self.model_name)
 -         return np.array([d.embedding for d in res.data]
 -                         ), res.usage.total_tokens
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embeddings.create(input=[truncate(text, 8196)],
 -                                             model=self.model_name)
 -         return np.array(res.data[0].embedding), res.usage.total_tokens
 - 
 - 
 - class LocalAIEmbed(Base):
 -     def __init__(self, key, model_name, base_url):
 -         if not base_url:
 -             raise ValueError("Local embedding model url cannot be None")
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         self.client = OpenAI(api_key="empty", base_url=base_url)
 -         self.model_name = model_name.split("___")[0]
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         res = self.client.embeddings.create(input=texts, model=self.model_name)
 -         return (
 -             np.array([d.embedding for d in res.data]),
 -             1024,
 -         )  # local embedding for LmStudio donot count tokens
 - 
 -     def encode_queries(self, text):
 -         embds, cnt = self.encode([text])
 -         return np.array(embds[0]), cnt
 - 
 - 
 - class AzureEmbed(OpenAIEmbed):
 -     def __init__(self, key, model_name, **kwargs):
 -         self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
 -         self.model_name = model_name
 - 
 - 
 - class BaiChuanEmbed(OpenAIEmbed):
 -     def __init__(self, key,
 -                  model_name='Baichuan-Text-Embedding',
 -                  base_url='https://api.baichuan-ai.com/v1'):
 -         if not base_url:
 -             base_url = "https://api.baichuan-ai.com/v1"
 -         super().__init__(key, model_name, base_url)
 - 
 - 
 - class QWenEmbed(Base):
 -     def __init__(self, key, model_name="text_embedding_v2", **kwargs):
 -         dashscope.api_key = key
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=10):
 -         import dashscope
 -         try:
 -             res = []
 -             token_count = 0
 -             texts = [truncate(t, 2048) for t in texts]
 -             for i in range(0, len(texts), batch_size):
 -                 resp = dashscope.TextEmbedding.call(
 -                     model=self.model_name,
 -                     input=texts[i:i + batch_size],
 -                     text_type="document"
 -                 )
 -                 embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
 -                 for e in resp["output"]["embeddings"]:
 -                     embds[e["text_index"]] = e["embedding"]
 -                 res.extend(embds)
 -                 token_count += resp["usage"]["total_tokens"]
 -             return np.array(res), token_count
 -         except Exception as e:
 -             raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
 -         return np.array([]), 0
 - 
 -     def encode_queries(self, text):
 -         try:
 -             resp = dashscope.TextEmbedding.call(
 -                 model=self.model_name,
 -                 input=text[:2048],
 -                 text_type="query"
 -             )
 -             return np.array(resp["output"]["embeddings"][0]
 -                             ["embedding"]), resp["usage"]["total_tokens"]
 -         except Exception as e:
 -             raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
 -         return np.array([]), 0
 - 
 - 
 - class ZhipuEmbed(Base):
 -     def __init__(self, key, model_name="embedding-2", **kwargs):
 -         self.client = ZhipuAI(api_key=key)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         arr = []
 -         tks_num = 0
 -         for txt in texts:
 -             res = self.client.embeddings.create(input=txt,
 -                                                 model=self.model_name)
 -             arr.append(res.data[0].embedding)
 -             tks_num += res.usage.total_tokens
 -         return np.array(arr), tks_num
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embeddings.create(input=text,
 -                                             model=self.model_name)
 -         return np.array(res.data[0].embedding), res.usage.total_tokens
 - 
 - 
 - class OllamaEmbed(Base):
 -     def __init__(self, key, model_name, **kwargs):
 -         self.client = Client(host=kwargs["base_url"])
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         arr = []
 -         tks_num = 0
 -         for txt in texts:
 -             res = self.client.embeddings(prompt=txt,
 -                                          model=self.model_name)
 -             arr.append(res["embedding"])
 -             tks_num += 128
 -         return np.array(arr), tks_num
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embeddings(prompt=text,
 -                                      model=self.model_name)
 -         return np.array(res["embedding"]), 128
 - 
 - 
 - class FastEmbed(Base):
 -     _model = None
 - 
 -     def __init__(
 -             self,
 -             key: Optional[str] = None,
 -             model_name: str = "BAAI/bge-small-en-v1.5",
 -             cache_dir: Optional[str] = None,
 -             threads: Optional[int] = None,
 -             **kwargs,
 -     ):
 -         from fastembed import TextEmbedding
 -         if not FastEmbed._model:
 -             self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         # Using the internal tokenizer to encode the texts and get the total
 -         # number of tokens
 -         encodings = self._model.model.tokenizer.encode_batch(texts)
 -         total_tokens = sum(len(e) for e in encodings)
 - 
 -         embeddings = [e.tolist() for e in self._model.embed(texts, batch_size)]
 - 
 -         return np.array(embeddings), total_tokens
 - 
 -     def encode_queries(self, text: str):
 -         # Using the internal tokenizer to encode the texts and get the total
 -         # number of tokens
 -         encoding = self._model.model.tokenizer.encode(text)
 -         embedding = next(self._model.query_embed(text)).tolist()
 - 
 -         return np.array(embedding), len(encoding.ids)
 - 
 - 
 - class XinferenceEmbed(Base):
 -     def __init__(self, key, model_name="", base_url=""):
 -         self.client = OpenAI(api_key="xxx", base_url=base_url)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         res = self.client.embeddings.create(input=texts,
 -                                             model=self.model_name)
 -         return np.array([d.embedding for d in res.data]
 -                         ), res.usage.total_tokens
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embeddings.create(input=[text],
 -                                             model=self.model_name)
 -         return np.array(res.data[0].embedding), res.usage.total_tokens
 - 
 - 
 - class YoudaoEmbed(Base):
 -     _client = None
 - 
 -     def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
 -         from BCEmbedding import EmbeddingModel as qanthing
 -         if not YoudaoEmbed._client:
 -             try:
 -                 print("LOADING BCE...")
 -                 YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
 -                     get_home_cache_dir(),
 -                     "bce-embedding-base_v1"))
 -             except Exception as e:
 -                 YoudaoEmbed._client = qanthing(
 -                     model_name_or_path=model_name.replace(
 -                         "maidalun1020", "InfiniFlow"))
 - 
 -     def encode(self, texts: list, batch_size=10):
 -         res = []
 -         token_count = 0
 -         for t in texts:
 -             token_count += num_tokens_from_string(t)
 -         for i in range(0, len(texts), batch_size):
 -             embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
 -             res.extend(embds)
 -         return np.array(res), token_count
 - 
 -     def encode_queries(self, text):
 -         embds = YoudaoEmbed._client.encode([text])
 -         return np.array(embds[0]), num_tokens_from_string(text)
 - 
 - 
 - class JinaEmbed(Base):
 -     def __init__(self, key, model_name="jina-embeddings-v2-base-zh",
 -                  base_url="https://api.jina.ai/v1/embeddings"):
 - 
 -         self.base_url = "https://api.jina.ai/v1/embeddings"
 -         self.headers = {
 -             "Content-Type": "application/json",
 -             "Authorization": f"Bearer {key}"
 -         }
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=None):
 -         texts = [truncate(t, 8196) for t in texts]
 -         data = {
 -             "model": self.model_name,
 -             "input": texts,
 -             'encoding_type': 'float'
 -         }
 -         res = requests.post(self.base_url, headers=self.headers, json=data).json()
 -         return np.array([d["embedding"] for d in res["data"]]), res["usage"]["total_tokens"]
 - 
 -     def encode_queries(self, text):
 -         embds, cnt = self.encode([text])
 -         return np.array(embds[0]), cnt
 - 
 - 
 - class InfinityEmbed(Base):
 -     _model = None
 - 
 -     def __init__(
 -             self,
 -             model_names: list[str] = ("BAAI/bge-small-en-v1.5",),
 -             engine_kwargs: dict = {},
 -             key = None,
 -     ):
 - 
 -         from infinity_emb import EngineArgs
 -         from infinity_emb.engine import AsyncEngineArray
 - 
 -         self._default_model = model_names[0]
 -         self.engine_array = AsyncEngineArray.from_args([EngineArgs(model_name_or_path = model_name, **engine_kwargs) for model_name in model_names])
 - 
 -     async def _embed(self, sentences: list[str], model_name: str = ""):
 -         if not model_name:
 -             model_name = self._default_model
 -         engine = self.engine_array[model_name]
 -         was_already_running = engine.is_running
 -         if not was_already_running:
 -             await engine.astart()
 -         embeddings, usage = await engine.embed(sentences=sentences)
 -         if not was_already_running:
 -             await engine.astop()
 -         return embeddings, usage
 - 
 -     def encode(self, texts: list[str], model_name: str = "") -> tuple[np.ndarray, int]:
 -         # Using the internal tokenizer to encode the texts and get the total
 -         # number of tokens
 -         embeddings, usage = asyncio.run(self._embed(texts, model_name))
 -         return np.array(embeddings), usage
 - 
 -     def encode_queries(self, text: str) -> tuple[np.ndarray, int]:
 -         # Using the internal tokenizer to encode the texts and get the total
 -         # number of tokens
 -         return self.encode([text])
 - 
 - 
 - class MistralEmbed(Base):
 -     def __init__(self, key, model_name="mistral-embed",
 -                  base_url=None):
 -         from mistralai.client import MistralClient
 -         self.client = MistralClient(api_key=key)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         texts = [truncate(t, 8196) for t in texts]
 -         res = self.client.embeddings(input=texts,
 -                                             model=self.model_name)
 -         return np.array([d.embedding for d in res.data]
 -                         ), res.usage.total_tokens
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embeddings(input=[truncate(text, 8196)],
 -                                             model=self.model_name)
 -         return np.array(res.data[0].embedding), res.usage.total_tokens
 - 
 - 
 - class BedrockEmbed(Base):
 -     def __init__(self, key, model_name,
 -                  **kwargs):
 -         import boto3
 -         self.bedrock_ak = eval(key).get('bedrock_ak', '')
 -         self.bedrock_sk = eval(key).get('bedrock_sk', '')
 -         self.bedrock_region = eval(key).get('bedrock_region', '')
 -         self.model_name = model_name
 -         self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
 -                                    aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         texts = [truncate(t, 8196) for t in texts]
 -         embeddings = []
 -         token_count = 0
 -         for text in texts:
 -             if self.model_name.split('.')[0] == 'amazon':
 -                 body = {"inputText": text}
 -             elif self.model_name.split('.')[0] == 'cohere':
 -                 body = {"texts": [text], "input_type": 'search_document'}
 - 
 -             response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
 -             model_response = json.loads(response["body"].read())
 -             embeddings.extend([model_response["embedding"]])
 -             token_count += num_tokens_from_string(text)
 - 
 -         return np.array(embeddings), token_count
 - 
 -     def encode_queries(self, text):
 - 
 -         embeddings = []
 -         token_count = num_tokens_from_string(text)
 -         if self.model_name.split('.')[0] == 'amazon':
 -             body = {"inputText": truncate(text, 8196)}
 -         elif self.model_name.split('.')[0] == 'cohere':
 -             body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}
 - 
 -         response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
 -         model_response = json.loads(response["body"].read())
 -         embeddings.extend([model_response["embedding"]])
 - 
 -         return np.array(embeddings), token_count
 - 
 - class GeminiEmbed(Base):
 -     def __init__(self, key, model_name='models/text-embedding-004',
 -                  **kwargs):
 -         genai.configure(api_key=key)
 -         self.model_name = 'models/' + model_name
 -         
 -     def encode(self, texts: list, batch_size=32):
 -         texts = [truncate(t, 2048) for t in texts]
 -         token_count = sum(num_tokens_from_string(text) for text in texts)
 -         result = genai.embed_content(
 -             model=self.model_name,
 -             content=texts,
 -             task_type="retrieval_document",
 -             title="Embedding of list of strings")
 -         return np.array(result['embedding']),token_count
 -     
 -     def encode_queries(self, text):
 -         result = genai.embed_content(
 -             model=self.model_name,
 -             content=truncate(text,2048),
 -             task_type="retrieval_document",
 -             title="Embedding of single string")
 -         token_count = num_tokens_from_string(text)
 -         return np.array(result['embedding']),token_count
 - 
 - class NvidiaEmbed(Base):
 -     def __init__(
 -         self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"
 -     ):
 -         if not base_url:
 -             base_url = "https://integrate.api.nvidia.com/v1/embeddings"
 -         self.api_key = key
 -         self.base_url = base_url
 -         self.headers = {
 -             "accept": "application/json",
 -             "Content-Type": "application/json",
 -             "authorization": f"Bearer {self.api_key}",
 -         }
 -         self.model_name = model_name
 -         if model_name == "nvidia/embed-qa-4":
 -             self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
 -             self.model_name = "NV-Embed-QA"
 -         if model_name == "snowflake/arctic-embed-l":
 -             self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
 - 
 -     def encode(self, texts: list, batch_size=None):
 -         payload = {
 -             "input": texts,
 -             "input_type": "query",
 -             "model": self.model_name,
 -             "encoding_format": "float",
 -             "truncate": "END",
 -         }
 -         res = requests.post(self.base_url, headers=self.headers, json=payload).json()
 -         return (
 -             np.array([d["embedding"] for d in res["data"]]),
 -             res["usage"]["total_tokens"],
 -         )
 - 
 -     def encode_queries(self, text):
 -         embds, cnt = self.encode([text])
 -         return np.array(embds[0]), cnt
 - 
 - 
 - class LmStudioEmbed(LocalAIEmbed):
 -     def __init__(self, key, model_name, base_url):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         if base_url.split("/")[-1] != "v1":
 -             self.base_url = os.path.join(base_url, "v1")
 -         self.client = OpenAI(api_key="lm-studio", base_url=self.base_url)
 -         self.model_name = model_name
 
 
  |