| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
-
- import os
- import onnxruntime as ort
- from huggingface_hub import snapshot_download
-
- from .operators import *
- from rag.settings import cron_logger
-
-
- class Recognizer(object):
- def __init__(self, label_list, task_name, model_dir=None):
- """
- If you have trouble downloading HuggingFace models, -_^ this might help!!
-
- For Linux:
- export HF_ENDPOINT=https://hf-mirror.com
-
- For Windows:
- Good luck
- ^_-
-
- """
- if not model_dir:
- model_dir = snapshot_download(repo_id="InfiniFlow/ocr")
-
- model_file_path = os.path.join(model_dir, task_name + ".onnx")
- if not os.path.exists(model_file_path):
- raise ValueError("not find model file path {}".format(
- model_file_path))
- if ort.get_device() == "GPU":
- self.ort_sess = ort.InferenceSession(model_file_path, providers=['CUDAExecutionProvider'])
- else:
- self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
- self.label_list = label_list
-
- def create_inputs(self, imgs, im_info):
- """generate input for different model type
- Args:
- imgs (list(numpy)): list of images (np.ndarray)
- im_info (list(dict)): list of image info
- Returns:
- inputs (dict): input of model
- """
- inputs = {}
-
- im_shape = []
- scale_factor = []
- if len(imgs) == 1:
- inputs['image'] = np.array((imgs[0],)).astype('float32')
- inputs['im_shape'] = np.array(
- (im_info[0]['im_shape'],)).astype('float32')
- inputs['scale_factor'] = np.array(
- (im_info[0]['scale_factor'],)).astype('float32')
- return inputs
-
- for e in im_info:
- im_shape.append(np.array((e['im_shape'],)).astype('float32'))
- scale_factor.append(np.array((e['scale_factor'],)).astype('float32'))
-
- inputs['im_shape'] = np.concatenate(im_shape, axis=0)
- inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
-
- imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
- max_shape_h = max([e[0] for e in imgs_shape])
- max_shape_w = max([e[1] for e in imgs_shape])
- padding_imgs = []
- for img in imgs:
- im_c, im_h, im_w = img.shape[:]
- padding_im = np.zeros(
- (im_c, max_shape_h, max_shape_w), dtype=np.float32)
- padding_im[:, :im_h, :im_w] = img
- padding_imgs.append(padding_im)
- inputs['image'] = np.stack(padding_imgs, axis=0)
- return inputs
-
- def preprocess(self, image_list):
- preprocess_ops = []
- for op_info in [
- {'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
- {'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
- {'type': 'Permute'},
- {'stride': 32, 'type': 'PadStride'}
- ]:
- new_op_info = op_info.copy()
- op_type = new_op_info.pop('type')
- preprocess_ops.append(eval(op_type)(**new_op_info))
-
- inputs = []
- for im_path in image_list:
- im, im_info = preprocess(im_path, preprocess_ops)
- inputs.append({"image": np.array((im,)).astype('float32'), "scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
- return inputs
-
-
- def __call__(self, image_list, thr=0.7, batch_size=16):
- res = []
- imgs = []
- for i in range(len(image_list)):
- if not isinstance(image_list[i], np.ndarray):
- imgs.append(np.array(image_list[i]))
- else: imgs.append(image_list[i])
-
- batch_loop_cnt = math.ceil(float(len(imgs)) / batch_size)
- for i in range(batch_loop_cnt):
- start_index = i * batch_size
- end_index = min((i + 1) * batch_size, len(imgs))
- batch_image_list = imgs[start_index:end_index]
- inputs = self.preprocess(batch_image_list)
- for ins in inputs:
- bb = []
- for b in self.ort_sess.run(None, ins)[0]:
- clsid, bbox, score = int(b[0]), b[2:], b[1]
- if score < thr:
- continue
- if clsid >= len(self.label_list):
- cron_logger.warning(f"bad category id")
- continue
- bb.append({
- "type": self.label_list[clsid].lower(),
- "bbox": [float(t) for t in bbox.tolist()],
- "score": float(score)
- })
- res.append(bb)
-
- #seeit.save_results(image_list, res, self.label_list, threshold=thr)
-
- return res
|