Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

generate.py 7.1KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import re
  17. from functools import partial
  18. import pandas as pd
  19. from api.db import LLMType
  20. from api.db.services.llm_service import LLMBundle
  21. from api.settings import retrievaler
  22. from graph.component.base import ComponentBase, ComponentParamBase
  23. class GenerateParam(ComponentParamBase):
  24. """
  25. Define the Generate component parameters.
  26. """
  27. def __init__(self):
  28. super().__init__()
  29. self.llm_id = ""
  30. self.prompt = ""
  31. self.max_tokens = 0
  32. self.temperature = 0
  33. self.top_p = 0
  34. self.presence_penalty = 0
  35. self.frequency_penalty = 0
  36. self.cite = True
  37. self.parameters = []
  38. def check(self):
  39. self.check_decimal_float(self.temperature, "[Generate] Temperature")
  40. self.check_decimal_float(self.presence_penalty, "[Generate] Presence penalty")
  41. self.check_decimal_float(self.frequency_penalty, "[Generate] Frequency penalty")
  42. self.check_nonnegative_number(self.max_tokens, "[Generate] Max tokens")
  43. self.check_decimal_float(self.top_p, "[Generate] Top P")
  44. self.check_empty(self.llm_id, "[Generate] LLM")
  45. # self.check_defined_type(self.parameters, "Parameters", ["list"])
  46. def gen_conf(self):
  47. conf = {}
  48. if self.max_tokens > 0: conf["max_tokens"] = self.max_tokens
  49. if self.temperature > 0: conf["temperature"] = self.temperature
  50. if self.top_p > 0: conf["top_p"] = self.top_p
  51. if self.presence_penalty > 0: conf["presence_penalty"] = self.presence_penalty
  52. if self.frequency_penalty > 0: conf["frequency_penalty"] = self.frequency_penalty
  53. return conf
  54. class Generate(ComponentBase):
  55. component_name = "Generate"
  56. def _run(self, history, **kwargs):
  57. chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
  58. prompt = self._param.prompt
  59. retrieval_res = self.get_input()
  60. input = "\n- ".join(retrieval_res["content"])
  61. for para in self._param.parameters:
  62. cpn = self._canvas.get_component(para["component_id"])["obj"]
  63. _, out = cpn.output(allow_partial=False)
  64. if "content" not in out.columns:
  65. kwargs[para["key"]] = "Nothing"
  66. else:
  67. kwargs[para["key"]] = "\n - ".join(out["content"])
  68. kwargs["input"] = input
  69. for n, v in kwargs.items():
  70. # prompt = re.sub(r"\{%s\}"%n, re.escape(str(v)), prompt)
  71. prompt = re.sub(r"\{%s\}" % n, str(v), prompt)
  72. if kwargs.get("stream"):
  73. return partial(self.stream_output, chat_mdl, prompt, retrieval_res)
  74. if "empty_response" in retrieval_res.columns:
  75. return Generate.be_output(input)
  76. ans = chat_mdl.chat(prompt, self._canvas.get_history(self._param.message_history_window_size),
  77. self._param.gen_conf())
  78. if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
  79. ans, idx = retrievaler.insert_citations(ans,
  80. [ck["content_ltks"]
  81. for _, ck in retrieval_res.iterrows()],
  82. [ck["vector"]
  83. for _, ck in retrieval_res.iterrows()],
  84. LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
  85. self._canvas.get_embedding_model()),
  86. tkweight=0.7,
  87. vtweight=0.3)
  88. del retrieval_res["vector"]
  89. retrieval_res = retrieval_res.to_dict("records")
  90. df = []
  91. for i in idx:
  92. df.append(retrieval_res[int(i)])
  93. r = re.search(r"^((.|[\r\n])*? ##%s\$\$)" % str(i), ans)
  94. assert r, f"{i} => {ans}"
  95. df[-1]["content"] = r.group(1)
  96. ans = re.sub(r"^((.|[\r\n])*? ##%s\$\$)" % str(i), "", ans)
  97. if ans: df.append({"content": ans})
  98. return pd.DataFrame(df)
  99. return Generate.be_output(ans)
  100. def stream_output(self, chat_mdl, prompt, retrieval_res):
  101. res = None
  102. if "empty_response" in retrieval_res.columns and "\n- ".join(retrieval_res["content"]):
  103. res = {"content": "\n- ".join(retrieval_res["content"]), "reference": []}
  104. yield res
  105. self.set_output(res)
  106. return
  107. answer = ""
  108. for ans in chat_mdl.chat_streamly(prompt, self._canvas.get_history(self._param.message_history_window_size),
  109. self._param.gen_conf()):
  110. res = {"content": ans, "reference": []}
  111. answer = ans
  112. yield res
  113. if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
  114. answer, idx = retrievaler.insert_citations(answer,
  115. [ck["content_ltks"]
  116. for _, ck in retrieval_res.iterrows()],
  117. [ck["vector"]
  118. for _, ck in retrieval_res.iterrows()],
  119. LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
  120. self._canvas.get_embedding_model()),
  121. tkweight=0.7,
  122. vtweight=0.3)
  123. doc_ids = set([])
  124. recall_docs = []
  125. for i in idx:
  126. did = retrieval_res.loc[int(i), "doc_id"]
  127. if did in doc_ids: continue
  128. doc_ids.add(did)
  129. recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})
  130. del retrieval_res["vector"]
  131. del retrieval_res["content_ltks"]
  132. reference = {
  133. "chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
  134. "doc_aggs": recall_docs
  135. }
  136. if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
  137. answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
  138. res = {"content": answer, "reference": reference}
  139. yield res
  140. self.set_output(res)