Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568
  1. import logging
  2. import os
  3. import re
  4. import json
  5. import time
  6. import infinity
  7. from infinity.common import ConflictType, InfinityException, SortType
  8. from infinity.index import IndexInfo, IndexType
  9. from infinity.connection_pool import ConnectionPool
  10. from infinity.errors import ErrorCode
  11. from rag import settings
  12. from rag.utils import singleton
  13. import polars as pl
  14. from polars.series.series import Series
  15. from api.utils.file_utils import get_project_base_directory
  16. from rag.utils.doc_store_conn import (
  17. DocStoreConnection,
  18. MatchExpr,
  19. MatchTextExpr,
  20. MatchDenseExpr,
  21. FusionExpr,
  22. OrderByExpr,
  23. )
  24. logger = logging.getLogger('ragflow.infinity_conn')
  25. def equivalent_condition_to_str(condition: dict) -> str|None:
  26. assert "_id" not in condition
  27. cond = list()
  28. for k, v in condition.items():
  29. if not isinstance(k, str) or k in ["kb_id"] or not v:
  30. continue
  31. if isinstance(v, list):
  32. inCond = list()
  33. for item in v:
  34. if isinstance(item, str):
  35. inCond.append(f"'{item}'")
  36. else:
  37. inCond.append(str(item))
  38. if inCond:
  39. strInCond = ", ".join(inCond)
  40. strInCond = f"{k} IN ({strInCond})"
  41. cond.append(strInCond)
  42. elif isinstance(v, str):
  43. cond.append(f"{k}='{v}'")
  44. else:
  45. cond.append(f"{k}={str(v)}")
  46. return " AND ".join(cond) if cond else "1=1"
  47. def concat_dataframes(df_list: list[pl.DataFrame], selectFields: list[str]) -> pl.DataFrame:
  48. """
  49. Concatenate multiple dataframes into one.
  50. """
  51. df_list = [df for df in df_list if not df.is_empty()]
  52. if df_list:
  53. return pl.concat(df_list)
  54. schema = dict()
  55. for fieldnm in selectFields:
  56. schema[fieldnm] = str
  57. return pl.DataFrame(schema=schema)
  58. @singleton
  59. class InfinityConnection(DocStoreConnection):
  60. def __init__(self):
  61. self.dbName = settings.INFINITY.get("db_name", "default_db")
  62. infinity_uri = settings.INFINITY["uri"]
  63. if ":" in infinity_uri:
  64. host, port = infinity_uri.split(":")
  65. infinity_uri = infinity.common.NetworkAddress(host, int(port))
  66. self.connPool = None
  67. logger.info(f"Use Infinity {infinity_uri} as the doc engine.")
  68. for _ in range(24):
  69. try:
  70. connPool = ConnectionPool(infinity_uri)
  71. inf_conn = connPool.get_conn()
  72. res = inf_conn.show_current_node()
  73. if res.error_code == ErrorCode.OK and res.server_status=="started":
  74. self._migrate_db(inf_conn)
  75. self.connPool = connPool
  76. connPool.release_conn(inf_conn)
  77. break
  78. connPool.release_conn(inf_conn)
  79. logger.warn(f"Infinity status: {res.server_status}. Waiting Infinity {infinity_uri} to be healthy.")
  80. time.sleep(5)
  81. except Exception as e:
  82. logger.warning(f"{str(e)}. Waiting Infinity {infinity_uri} to be healthy.")
  83. time.sleep(5)
  84. if self.connPool is None:
  85. msg = f"Infinity {infinity_uri} didn't become healthy in 120s."
  86. logger.error(msg)
  87. raise Exception(msg)
  88. logger.info(f"Infinity {infinity_uri} is healthy.")
  89. def _migrate_db(self, inf_conn):
  90. inf_db = inf_conn.create_database(self.dbName, ConflictType.Ignore)
  91. fp_mapping = os.path.join(
  92. get_project_base_directory(), "conf", "infinity_mapping.json"
  93. )
  94. if not os.path.exists(fp_mapping):
  95. raise Exception(f"Mapping file not found at {fp_mapping}")
  96. schema = json.load(open(fp_mapping))
  97. table_names = inf_db.list_tables().table_names
  98. for table_name in table_names:
  99. inf_table = inf_db.get_table(table_name)
  100. index_names = inf_table.list_indexes().index_names
  101. if "q_vec_idx" not in index_names:
  102. # Skip tables not created by me
  103. continue
  104. column_names = inf_table.show_columns()["name"]
  105. column_names = set(column_names)
  106. for field_name, field_info in schema.items():
  107. if field_name in column_names:
  108. continue
  109. res = inf_table.add_columns({field_name: field_info})
  110. assert res.error_code == infinity.ErrorCode.OK
  111. logger.info(
  112. f"INFINITY added following column to table {table_name}: {field_name} {field_info}"
  113. )
  114. if field_info["type"] != "varchar" or "analyzer" not in field_info:
  115. continue
  116. inf_table.create_index(
  117. f"text_idx_{field_name}",
  118. IndexInfo(
  119. field_name, IndexType.FullText, {"ANALYZER": field_info["analyzer"]}
  120. ),
  121. ConflictType.Ignore,
  122. )
  123. """
  124. Database operations
  125. """
  126. def dbType(self) -> str:
  127. return "infinity"
  128. def health(self) -> dict:
  129. """
  130. Return the health status of the database.
  131. TODO: Infinity-sdk provides health() to wrap `show global variables` and `show tables`
  132. """
  133. inf_conn = self.connPool.get_conn()
  134. res = inf_conn.show_current_node()
  135. self.connPool.release_conn(inf_conn)
  136. res2 = {
  137. "type": "infinity",
  138. "status": "green" if res.error_code == 0 and res.server_status == "started" else "red",
  139. "error": res.error_msg,
  140. }
  141. return res2
  142. """
  143. Table operations
  144. """
  145. def createIdx(self, indexName: str, knowledgebaseId: str, vectorSize: int):
  146. table_name = f"{indexName}_{knowledgebaseId}"
  147. inf_conn = self.connPool.get_conn()
  148. inf_db = inf_conn.create_database(self.dbName, ConflictType.Ignore)
  149. fp_mapping = os.path.join(
  150. get_project_base_directory(), "conf", "infinity_mapping.json"
  151. )
  152. if not os.path.exists(fp_mapping):
  153. raise Exception(f"Mapping file not found at {fp_mapping}")
  154. schema = json.load(open(fp_mapping))
  155. vector_name = f"q_{vectorSize}_vec"
  156. schema[vector_name] = {"type": f"vector,{vectorSize},float"}
  157. inf_table = inf_db.create_table(
  158. table_name,
  159. schema,
  160. ConflictType.Ignore,
  161. )
  162. inf_table.create_index(
  163. "q_vec_idx",
  164. IndexInfo(
  165. vector_name,
  166. IndexType.Hnsw,
  167. {
  168. "M": "16",
  169. "ef_construction": "50",
  170. "metric": "cosine",
  171. "encode": "lvq",
  172. },
  173. ),
  174. ConflictType.Ignore,
  175. )
  176. for field_name, field_info in schema.items():
  177. if field_info["type"] != "varchar" or "analyzer" not in field_info:
  178. continue
  179. inf_table.create_index(
  180. f"text_idx_{field_name}",
  181. IndexInfo(
  182. field_name, IndexType.FullText, {"ANALYZER": field_info["analyzer"]}
  183. ),
  184. ConflictType.Ignore,
  185. )
  186. self.connPool.release_conn(inf_conn)
  187. logger.info(
  188. f"INFINITY created table {table_name}, vector size {vectorSize}"
  189. )
  190. def deleteIdx(self, indexName: str, knowledgebaseId: str):
  191. table_name = f"{indexName}_{knowledgebaseId}"
  192. inf_conn = self.connPool.get_conn()
  193. db_instance = inf_conn.get_database(self.dbName)
  194. db_instance.drop_table(table_name, ConflictType.Ignore)
  195. self.connPool.release_conn(inf_conn)
  196. logger.info(f"INFINITY dropped table {table_name}")
  197. def indexExist(self, indexName: str, knowledgebaseId: str) -> bool:
  198. table_name = f"{indexName}_{knowledgebaseId}"
  199. try:
  200. inf_conn = self.connPool.get_conn()
  201. db_instance = inf_conn.get_database(self.dbName)
  202. _ = db_instance.get_table(table_name)
  203. self.connPool.release_conn(inf_conn)
  204. return True
  205. except Exception as e:
  206. logger.warning(f"INFINITY indexExist {str(e)}")
  207. return False
  208. """
  209. CRUD operations
  210. """
  211. def search(
  212. self,
  213. selectFields: list[str],
  214. highlightFields: list[str],
  215. condition: dict,
  216. matchExprs: list[MatchExpr],
  217. orderBy: OrderByExpr,
  218. offset: int,
  219. limit: int,
  220. indexNames: str | list[str],
  221. knowledgebaseIds: list[str],
  222. ) -> tuple[pl.DataFrame, int]:
  223. """
  224. TODO: Infinity doesn't provide highlight
  225. """
  226. if isinstance(indexNames, str):
  227. indexNames = indexNames.split(",")
  228. assert isinstance(indexNames, list) and len(indexNames) > 0
  229. inf_conn = self.connPool.get_conn()
  230. db_instance = inf_conn.get_database(self.dbName)
  231. df_list = list()
  232. table_list = list()
  233. for essential_field in ["id"]:
  234. if essential_field not in selectFields:
  235. selectFields.append(essential_field)
  236. if matchExprs:
  237. for essential_field in ["score()", "pagerank_fea"]:
  238. selectFields.append(essential_field)
  239. # Prepare expressions common to all tables
  240. filter_cond = None
  241. filter_fulltext = ""
  242. if condition:
  243. filter_cond = equivalent_condition_to_str(condition)
  244. for matchExpr in matchExprs:
  245. if isinstance(matchExpr, MatchTextExpr):
  246. if filter_cond and "filter" not in matchExpr.extra_options:
  247. matchExpr.extra_options.update({"filter": filter_cond})
  248. fields = ",".join(matchExpr.fields)
  249. filter_fulltext = f"filter_fulltext('{fields}', '{matchExpr.matching_text}')"
  250. if filter_cond:
  251. filter_fulltext = f"({filter_cond}) AND {filter_fulltext}"
  252. minimum_should_match = matchExpr.extra_options.get("minimum_should_match", 0.0)
  253. if isinstance(minimum_should_match, float):
  254. str_minimum_should_match = str(int(minimum_should_match * 100)) + "%"
  255. matchExpr.extra_options["minimum_should_match"] = str_minimum_should_match
  256. for k, v in matchExpr.extra_options.items():
  257. if not isinstance(v, str):
  258. matchExpr.extra_options[k] = str(v)
  259. logger.debug(f"INFINITY search MatchTextExpr: {json.dumps(matchExpr.__dict__)}")
  260. elif isinstance(matchExpr, MatchDenseExpr):
  261. if filter_cond and "filter" not in matchExpr.extra_options:
  262. matchExpr.extra_options.update({"filter": filter_fulltext})
  263. for k, v in matchExpr.extra_options.items():
  264. if not isinstance(v, str):
  265. matchExpr.extra_options[k] = str(v)
  266. logger.debug(f"INFINITY search MatchDenseExpr: {json.dumps(matchExpr.__dict__)}")
  267. elif isinstance(matchExpr, FusionExpr):
  268. logger.debug(f"INFINITY search FusionExpr: {json.dumps(matchExpr.__dict__)}")
  269. order_by_expr_list = list()
  270. if orderBy.fields:
  271. for order_field in orderBy.fields:
  272. if order_field[1] == 0:
  273. order_by_expr_list.append((order_field[0], SortType.Asc))
  274. else:
  275. order_by_expr_list.append((order_field[0], SortType.Desc))
  276. total_hits_count = 0
  277. # Scatter search tables and gather the results
  278. for indexName in indexNames:
  279. for knowledgebaseId in knowledgebaseIds:
  280. table_name = f"{indexName}_{knowledgebaseId}"
  281. try:
  282. table_instance = db_instance.get_table(table_name)
  283. except Exception:
  284. continue
  285. table_list.append(table_name)
  286. builder = table_instance.output(selectFields)
  287. if len(matchExprs) > 0:
  288. for matchExpr in matchExprs:
  289. if isinstance(matchExpr, MatchTextExpr):
  290. fields = ",".join(matchExpr.fields)
  291. builder = builder.match_text(
  292. fields,
  293. matchExpr.matching_text,
  294. matchExpr.topn,
  295. matchExpr.extra_options,
  296. )
  297. elif isinstance(matchExpr, MatchDenseExpr):
  298. builder = builder.match_dense(
  299. matchExpr.vector_column_name,
  300. matchExpr.embedding_data,
  301. matchExpr.embedding_data_type,
  302. matchExpr.distance_type,
  303. matchExpr.topn,
  304. matchExpr.extra_options,
  305. )
  306. elif isinstance(matchExpr, FusionExpr):
  307. builder = builder.fusion(
  308. matchExpr.method, matchExpr.topn, matchExpr.fusion_params
  309. )
  310. else:
  311. if len(filter_cond) > 0:
  312. builder.filter(filter_cond)
  313. if orderBy.fields:
  314. builder.sort(order_by_expr_list)
  315. builder.offset(offset).limit(limit)
  316. kb_res, extra_result = builder.option({"total_hits_count": True}).to_pl()
  317. if extra_result:
  318. total_hits_count += int(extra_result["total_hits_count"])
  319. logger.debug(f"INFINITY search table: {str(table_name)}, result: {str(kb_res)}")
  320. df_list.append(kb_res)
  321. self.connPool.release_conn(inf_conn)
  322. res = concat_dataframes(df_list, selectFields)
  323. if matchExprs:
  324. res = res.sort(pl.col("SCORE") + pl.col("pagerank_fea"), descending=True, maintain_order=True)
  325. res = res.limit(limit)
  326. logger.debug(f"INFINITY search final result: {str(res)}")
  327. return res, total_hits_count
  328. def get(
  329. self, chunkId: str, indexName: str, knowledgebaseIds: list[str]
  330. ) -> dict | None:
  331. inf_conn = self.connPool.get_conn()
  332. db_instance = inf_conn.get_database(self.dbName)
  333. df_list = list()
  334. assert isinstance(knowledgebaseIds, list)
  335. table_list = list()
  336. for knowledgebaseId in knowledgebaseIds:
  337. table_name = f"{indexName}_{knowledgebaseId}"
  338. table_list.append(table_name)
  339. table_instance = db_instance.get_table(table_name)
  340. kb_res, _ = table_instance.output(["*"]).filter(f"id = '{chunkId}'").to_pl()
  341. logger.debug(f"INFINITY get table: {str(table_list)}, result: {str(kb_res)}")
  342. df_list.append(kb_res)
  343. self.connPool.release_conn(inf_conn)
  344. res = concat_dataframes(df_list, ["id"])
  345. res_fields = self.getFields(res, res.columns)
  346. return res_fields.get(chunkId, None)
  347. def insert(
  348. self, documents: list[dict], indexName: str, knowledgebaseId: str
  349. ) -> list[str]:
  350. inf_conn = self.connPool.get_conn()
  351. db_instance = inf_conn.get_database(self.dbName)
  352. table_name = f"{indexName}_{knowledgebaseId}"
  353. try:
  354. table_instance = db_instance.get_table(table_name)
  355. except InfinityException as e:
  356. # src/common/status.cppm, kTableNotExist = 3022
  357. if e.error_code != ErrorCode.TABLE_NOT_EXIST:
  358. raise
  359. vector_size = 0
  360. patt = re.compile(r"q_(?P<vector_size>\d+)_vec")
  361. for k in documents[0].keys():
  362. m = patt.match(k)
  363. if m:
  364. vector_size = int(m.group("vector_size"))
  365. break
  366. if vector_size == 0:
  367. raise ValueError("Cannot infer vector size from documents")
  368. self.createIdx(indexName, knowledgebaseId, vector_size)
  369. table_instance = db_instance.get_table(table_name)
  370. for d in documents:
  371. assert "_id" not in d
  372. assert "id" in d
  373. for k, v in d.items():
  374. if k in ["important_kwd", "question_kwd", "entities_kwd"]:
  375. assert isinstance(v, list)
  376. d[k] = "###".join(v)
  377. elif k == 'kb_id':
  378. if isinstance(d[k], list):
  379. d[k] = d[k][0] # since d[k] is a list, but we need a str
  380. elif k == "position_int":
  381. assert isinstance(v, list)
  382. arr = [num for row in v for num in row]
  383. d[k] = "_".join(f"{num:08x}" for num in arr)
  384. elif k in ["page_num_int", "top_int", "position_int"]:
  385. assert isinstance(v, list)
  386. d[k] = "_".join(f"{num:08x}" for num in v)
  387. ids = ["'{}'".format(d["id"]) for d in documents]
  388. str_ids = ", ".join(ids)
  389. str_filter = f"id IN ({str_ids})"
  390. table_instance.delete(str_filter)
  391. # for doc in documents:
  392. # logger.info(f"insert position_int: {doc['position_int']}")
  393. # logger.info(f"InfinityConnection.insert {json.dumps(documents)}")
  394. table_instance.insert(documents)
  395. self.connPool.release_conn(inf_conn)
  396. logger.debug(f"INFINITY inserted into {table_name} {str_ids}.")
  397. return []
  398. def update(
  399. self, condition: dict, newValue: dict, indexName: str, knowledgebaseId: str
  400. ) -> bool:
  401. # if 'position_int' in newValue:
  402. # logger.info(f"update position_int: {newValue['position_int']}")
  403. inf_conn = self.connPool.get_conn()
  404. db_instance = inf_conn.get_database(self.dbName)
  405. table_name = f"{indexName}_{knowledgebaseId}"
  406. table_instance = db_instance.get_table(table_name)
  407. if "exist" in condition:
  408. del condition["exist"]
  409. filter = equivalent_condition_to_str(condition)
  410. for k, v in list(newValue.items()):
  411. if k.endswith("_kwd") and isinstance(v, list):
  412. newValue[k] = " ".join(v)
  413. elif k == 'kb_id':
  414. if isinstance(newValue[k], list):
  415. newValue[k] = newValue[k][0] # since d[k] is a list, but we need a str
  416. elif k == "position_int":
  417. assert isinstance(v, list)
  418. arr = [num for row in v for num in row]
  419. newValue[k] = "_".join(f"{num:08x}" for num in arr)
  420. elif k in ["page_num_int", "top_int"]:
  421. assert isinstance(v, list)
  422. newValue[k] = "_".join(f"{num:08x}" for num in v)
  423. elif k == "remove" and v in ["pagerank_fea"]:
  424. del newValue[k]
  425. newValue[v] = 0
  426. logger.debug(f"INFINITY update table {table_name}, filter {filter}, newValue {newValue}.")
  427. table_instance.update(filter, newValue)
  428. self.connPool.release_conn(inf_conn)
  429. return True
  430. def delete(self, condition: dict, indexName: str, knowledgebaseId: str) -> int:
  431. inf_conn = self.connPool.get_conn()
  432. db_instance = inf_conn.get_database(self.dbName)
  433. table_name = f"{indexName}_{knowledgebaseId}"
  434. filter = equivalent_condition_to_str(condition)
  435. try:
  436. table_instance = db_instance.get_table(table_name)
  437. except Exception:
  438. logger.warning(
  439. f"Skipped deleting `{filter}` from table {table_name} since the table doesn't exist."
  440. )
  441. return 0
  442. logger.debug(f"INFINITY delete table {table_name}, filter {filter}.")
  443. res = table_instance.delete(filter)
  444. self.connPool.release_conn(inf_conn)
  445. return res.deleted_rows
  446. """
  447. Helper functions for search result
  448. """
  449. def getTotal(self, res: tuple[pl.DataFrame, int] | pl.DataFrame) -> int:
  450. if isinstance(res, tuple):
  451. return res[1]
  452. return len(res)
  453. def getChunkIds(self, res: tuple[pl.DataFrame, int] | pl.DataFrame) -> list[str]:
  454. if isinstance(res, tuple):
  455. res = res[0]
  456. return list(res["id"])
  457. def getFields(self, res: tuple[pl.DataFrame, int] | pl.DataFrame, fields: list[str]) -> list[str, dict]:
  458. if isinstance(res, tuple):
  459. res = res[0]
  460. res_fields = {}
  461. if not fields:
  462. return {}
  463. num_rows = len(res)
  464. column_id = res["id"]
  465. for i in range(num_rows):
  466. id = column_id[i]
  467. m = {"id": id}
  468. for fieldnm in fields:
  469. if fieldnm not in res:
  470. m[fieldnm] = None
  471. continue
  472. v = res[fieldnm][i]
  473. if isinstance(v, Series):
  474. v = list(v)
  475. elif fieldnm in ["important_kwd", "question_kwd", "entities_kwd"]:
  476. assert isinstance(v, str)
  477. v = [kwd for kwd in v.split("###") if kwd]
  478. elif fieldnm == "position_int":
  479. assert isinstance(v, str)
  480. if v:
  481. arr = [int(hex_val, 16) for hex_val in v.split('_')]
  482. v = [arr[i:i + 4] for i in range(0, len(arr), 4)]
  483. else:
  484. v = []
  485. elif fieldnm in ["page_num_int", "top_int"]:
  486. assert isinstance(v, str)
  487. if v:
  488. v = [int(hex_val, 16) for hex_val in v.split('_')]
  489. else:
  490. v = []
  491. else:
  492. if not isinstance(v, str):
  493. v = str(v)
  494. # if fieldnm.endswith("_tks"):
  495. # v = rmSpace(v)
  496. m[fieldnm] = v
  497. res_fields[id] = m
  498. return res_fields
  499. def getHighlight(self, res: tuple[pl.DataFrame, int] | pl.DataFrame, keywords: list[str], fieldnm: str):
  500. if isinstance(res, tuple):
  501. res = res[0]
  502. ans = {}
  503. num_rows = len(res)
  504. column_id = res["id"]
  505. for i in range(num_rows):
  506. id = column_id[i]
  507. txt = res[fieldnm][i]
  508. txt = re.sub(r"[\r\n]", " ", txt, flags=re.IGNORECASE | re.MULTILINE)
  509. txts = []
  510. for t in re.split(r"[.?!;\n]", txt):
  511. for w in keywords:
  512. t = re.sub(
  513. r"(^|[ .?/'\"\(\)!,:;-])(%s)([ .?/'\"\(\)!,:;-])"
  514. % re.escape(w),
  515. r"\1<em>\2</em>\3",
  516. t,
  517. flags=re.IGNORECASE | re.MULTILINE,
  518. )
  519. if not re.search(
  520. r"<em>[^<>]+</em>", t, flags=re.IGNORECASE | re.MULTILINE
  521. ):
  522. continue
  523. txts.append(t)
  524. ans[id] = "...".join(txts)
  525. return ans
  526. def getAggregation(self, res: tuple[pl.DataFrame, int] | pl.DataFrame, fieldnm: str):
  527. """
  528. TODO: Infinity doesn't provide aggregation
  529. """
  530. return list()
  531. """
  532. SQL
  533. """
  534. def sql(sql: str, fetch_size: int, format: str):
  535. raise NotImplementedError("Not implemented")