Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

chunk_app.py 16KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import datetime
  17. import json
  18. from flask import request
  19. from flask_login import login_required, current_user
  20. from rag.app.qa import rmPrefix, beAdoc
  21. from rag.app.tag import label_question
  22. from rag.nlp import search, rag_tokenizer
  23. from rag.prompts import keyword_extraction, cross_languages
  24. from rag.settings import PAGERANK_FLD
  25. from rag.utils import rmSpace
  26. from api.db import LLMType, ParserType
  27. from api.db.services.knowledgebase_service import KnowledgebaseService
  28. from api.db.services.llm_service import LLMBundle
  29. from api.db.services.user_service import UserTenantService
  30. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  31. from api.db.services.document_service import DocumentService
  32. from api import settings
  33. from api.utils.api_utils import get_json_result
  34. import xxhash
  35. import re
  36. @manager.route('/list', methods=['POST']) # noqa: F821
  37. @login_required
  38. @validate_request("doc_id")
  39. def list_chunk():
  40. req = request.json
  41. doc_id = req["doc_id"]
  42. page = int(req.get("page", 1))
  43. size = int(req.get("size", 30))
  44. question = req.get("keywords", "")
  45. try:
  46. tenant_id = DocumentService.get_tenant_id(req["doc_id"])
  47. if not tenant_id:
  48. return get_data_error_result(message="Tenant not found!")
  49. e, doc = DocumentService.get_by_id(doc_id)
  50. if not e:
  51. return get_data_error_result(message="Document not found!")
  52. kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
  53. query = {
  54. "doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
  55. }
  56. if "available_int" in req:
  57. query["available_int"] = int(req["available_int"])
  58. sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
  59. res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
  60. for id in sres.ids:
  61. d = {
  62. "chunk_id": id,
  63. "content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
  64. id].get(
  65. "content_with_weight", ""),
  66. "doc_id": sres.field[id]["doc_id"],
  67. "docnm_kwd": sres.field[id]["docnm_kwd"],
  68. "important_kwd": sres.field[id].get("important_kwd", []),
  69. "question_kwd": sres.field[id].get("question_kwd", []),
  70. "image_id": sres.field[id].get("img_id", ""),
  71. "available_int": int(sres.field[id].get("available_int", 1)),
  72. "positions": sres.field[id].get("position_int", []),
  73. }
  74. assert isinstance(d["positions"], list)
  75. assert len(d["positions"]) == 0 or (isinstance(d["positions"][0], list) and len(d["positions"][0]) == 5)
  76. res["chunks"].append(d)
  77. return get_json_result(data=res)
  78. except Exception as e:
  79. if str(e).find("not_found") > 0:
  80. return get_json_result(data=False, message='No chunk found!',
  81. code=settings.RetCode.DATA_ERROR)
  82. return server_error_response(e)
  83. @manager.route('/get', methods=['GET']) # noqa: F821
  84. @login_required
  85. def get():
  86. chunk_id = request.args["chunk_id"]
  87. try:
  88. tenants = UserTenantService.query(user_id=current_user.id)
  89. if not tenants:
  90. return get_data_error_result(message="Tenant not found!")
  91. for tenant in tenants:
  92. kb_ids = KnowledgebaseService.get_kb_ids(tenant.tenant_id)
  93. chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant.tenant_id), kb_ids)
  94. if chunk:
  95. break
  96. if chunk is None:
  97. return server_error_response(Exception("Chunk not found"))
  98. k = []
  99. for n in chunk.keys():
  100. if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
  101. k.append(n)
  102. for n in k:
  103. del chunk[n]
  104. return get_json_result(data=chunk)
  105. except Exception as e:
  106. if str(e).find("NotFoundError") >= 0:
  107. return get_json_result(data=False, message='Chunk not found!',
  108. code=settings.RetCode.DATA_ERROR)
  109. return server_error_response(e)
  110. @manager.route('/set', methods=['POST']) # noqa: F821
  111. @login_required
  112. @validate_request("doc_id", "chunk_id", "content_with_weight")
  113. def set():
  114. req = request.json
  115. d = {
  116. "id": req["chunk_id"],
  117. "content_with_weight": req["content_with_weight"]}
  118. d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
  119. d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
  120. if "important_kwd" in req:
  121. d["important_kwd"] = req["important_kwd"]
  122. d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
  123. if "question_kwd" in req:
  124. d["question_kwd"] = req["question_kwd"]
  125. d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["question_kwd"]))
  126. if "tag_kwd" in req:
  127. d["tag_kwd"] = req["tag_kwd"]
  128. if "tag_feas" in req:
  129. d["tag_feas"] = req["tag_feas"]
  130. if "available_int" in req:
  131. d["available_int"] = req["available_int"]
  132. try:
  133. tenant_id = DocumentService.get_tenant_id(req["doc_id"])
  134. if not tenant_id:
  135. return get_data_error_result(message="Tenant not found!")
  136. embd_id = DocumentService.get_embd_id(req["doc_id"])
  137. embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
  138. e, doc = DocumentService.get_by_id(req["doc_id"])
  139. if not e:
  140. return get_data_error_result(message="Document not found!")
  141. if doc.parser_id == ParserType.QA:
  142. arr = [
  143. t for t in re.split(
  144. r"[\n\t]",
  145. req["content_with_weight"]) if len(t) > 1]
  146. q, a = rmPrefix(arr[0]), rmPrefix("\n".join(arr[1:]))
  147. d = beAdoc(d, q, a, not any(
  148. [rag_tokenizer.is_chinese(t) for t in q + a]))
  149. v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
  150. v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
  151. d["q_%d_vec" % len(v)] = v.tolist()
  152. settings.docStoreConn.update({"id": req["chunk_id"]}, d, search.index_name(tenant_id), doc.kb_id)
  153. return get_json_result(data=True)
  154. except Exception as e:
  155. return server_error_response(e)
  156. @manager.route('/switch', methods=['POST']) # noqa: F821
  157. @login_required
  158. @validate_request("chunk_ids", "available_int", "doc_id")
  159. def switch():
  160. req = request.json
  161. try:
  162. e, doc = DocumentService.get_by_id(req["doc_id"])
  163. if not e:
  164. return get_data_error_result(message="Document not found!")
  165. for cid in req["chunk_ids"]:
  166. if not settings.docStoreConn.update({"id": cid},
  167. {"available_int": int(req["available_int"])},
  168. search.index_name(DocumentService.get_tenant_id(req["doc_id"])),
  169. doc.kb_id):
  170. return get_data_error_result(message="Index updating failure")
  171. return get_json_result(data=True)
  172. except Exception as e:
  173. return server_error_response(e)
  174. @manager.route('/rm', methods=['POST']) # noqa: F821
  175. @login_required
  176. @validate_request("chunk_ids", "doc_id")
  177. def rm():
  178. from rag.utils.storage_factory import STORAGE_IMPL
  179. req = request.json
  180. try:
  181. e, doc = DocumentService.get_by_id(req["doc_id"])
  182. if not e:
  183. return get_data_error_result(message="Document not found!")
  184. if not settings.docStoreConn.delete({"id": req["chunk_ids"]}, search.index_name(current_user.id), doc.kb_id):
  185. return get_data_error_result(message="Index updating failure")
  186. deleted_chunk_ids = req["chunk_ids"]
  187. chunk_number = len(deleted_chunk_ids)
  188. DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
  189. for cid in deleted_chunk_ids:
  190. if STORAGE_IMPL.obj_exist(doc.kb_id, cid):
  191. STORAGE_IMPL.rm(doc.kb_id, cid)
  192. return get_json_result(data=True)
  193. except Exception as e:
  194. return server_error_response(e)
  195. @manager.route('/create', methods=['POST']) # noqa: F821
  196. @login_required
  197. @validate_request("doc_id", "content_with_weight")
  198. def create():
  199. req = request.json
  200. chunck_id = xxhash.xxh64((req["content_with_weight"] + req["doc_id"]).encode("utf-8")).hexdigest()
  201. d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]),
  202. "content_with_weight": req["content_with_weight"]}
  203. d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
  204. d["important_kwd"] = req.get("important_kwd", [])
  205. d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_kwd", [])))
  206. d["question_kwd"] = req.get("question_kwd", [])
  207. d["question_tks"] = rag_tokenizer.tokenize("\n".join(req.get("question_kwd", [])))
  208. d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
  209. d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
  210. try:
  211. e, doc = DocumentService.get_by_id(req["doc_id"])
  212. if not e:
  213. return get_data_error_result(message="Document not found!")
  214. d["kb_id"] = [doc.kb_id]
  215. d["docnm_kwd"] = doc.name
  216. d["title_tks"] = rag_tokenizer.tokenize(doc.name)
  217. d["doc_id"] = doc.id
  218. tenant_id = DocumentService.get_tenant_id(req["doc_id"])
  219. if not tenant_id:
  220. return get_data_error_result(message="Tenant not found!")
  221. e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
  222. if not e:
  223. return get_data_error_result(message="Knowledgebase not found!")
  224. if kb.pagerank:
  225. d[PAGERANK_FLD] = kb.pagerank
  226. embd_id = DocumentService.get_embd_id(req["doc_id"])
  227. embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING.value, embd_id)
  228. v, c = embd_mdl.encode([doc.name, req["content_with_weight"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
  229. v = 0.1 * v[0] + 0.9 * v[1]
  230. d["q_%d_vec" % len(v)] = v.tolist()
  231. settings.docStoreConn.insert([d], search.index_name(tenant_id), doc.kb_id)
  232. DocumentService.increment_chunk_num(
  233. doc.id, doc.kb_id, c, 1, 0)
  234. return get_json_result(data={"chunk_id": chunck_id})
  235. except Exception as e:
  236. return server_error_response(e)
  237. @manager.route('/retrieval_test', methods=['POST']) # noqa: F821
  238. @login_required
  239. @validate_request("kb_id", "question")
  240. def retrieval_test():
  241. req = request.json
  242. page = int(req.get("page", 1))
  243. size = int(req.get("size", 30))
  244. question = req["question"]
  245. kb_ids = req["kb_id"]
  246. if isinstance(kb_ids, str):
  247. kb_ids = [kb_ids]
  248. doc_ids = req.get("doc_ids", [])
  249. similarity_threshold = float(req.get("similarity_threshold", 0.0))
  250. vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
  251. use_kg = req.get("use_kg", False)
  252. top = int(req.get("top_k", 1024))
  253. langs = req.get("cross_languages", [])
  254. tenant_ids = []
  255. try:
  256. tenants = UserTenantService.query(user_id=current_user.id)
  257. for kb_id in kb_ids:
  258. for tenant in tenants:
  259. if KnowledgebaseService.query(
  260. tenant_id=tenant.tenant_id, id=kb_id):
  261. tenant_ids.append(tenant.tenant_id)
  262. break
  263. else:
  264. return get_json_result(
  265. data=False, message='Only owner of knowledgebase authorized for this operation.',
  266. code=settings.RetCode.OPERATING_ERROR)
  267. e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
  268. if not e:
  269. return get_data_error_result(message="Knowledgebase not found!")
  270. if langs:
  271. question = cross_languages(kb.tenant_id, None, question, langs)
  272. embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
  273. rerank_mdl = None
  274. if req.get("rerank_id"):
  275. rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
  276. if req.get("keyword", False):
  277. chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
  278. question += keyword_extraction(chat_mdl, question)
  279. labels = label_question(question, [kb])
  280. ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
  281. similarity_threshold, vector_similarity_weight, top,
  282. doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
  283. rank_feature=labels
  284. )
  285. if use_kg:
  286. ck = settings.kg_retrievaler.retrieval(question,
  287. tenant_ids,
  288. kb_ids,
  289. embd_mdl,
  290. LLMBundle(kb.tenant_id, LLMType.CHAT))
  291. if ck["content_with_weight"]:
  292. ranks["chunks"].insert(0, ck)
  293. for c in ranks["chunks"]:
  294. c.pop("vector", None)
  295. ranks["labels"] = labels
  296. return get_json_result(data=ranks)
  297. except Exception as e:
  298. if str(e).find("not_found") > 0:
  299. return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
  300. code=settings.RetCode.DATA_ERROR)
  301. return server_error_response(e)
  302. @manager.route('/knowledge_graph', methods=['GET']) # noqa: F821
  303. @login_required
  304. def knowledge_graph():
  305. doc_id = request.args["doc_id"]
  306. tenant_id = DocumentService.get_tenant_id(doc_id)
  307. kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
  308. req = {
  309. "doc_ids": [doc_id],
  310. "knowledge_graph_kwd": ["graph", "mind_map"]
  311. }
  312. sres = settings.retrievaler.search(req, search.index_name(tenant_id), kb_ids)
  313. obj = {"graph": {}, "mind_map": {}}
  314. for id in sres.ids[:2]:
  315. ty = sres.field[id]["knowledge_graph_kwd"]
  316. try:
  317. content_json = json.loads(sres.field[id]["content_with_weight"])
  318. except Exception:
  319. continue
  320. if ty == 'mind_map':
  321. node_dict = {}
  322. def repeat_deal(content_json, node_dict):
  323. if 'id' in content_json:
  324. if content_json['id'] in node_dict:
  325. node_name = content_json['id']
  326. content_json['id'] += f"({node_dict[content_json['id']]})"
  327. node_dict[node_name] += 1
  328. else:
  329. node_dict[content_json['id']] = 1
  330. if 'children' in content_json and content_json['children']:
  331. for item in content_json['children']:
  332. repeat_deal(item, node_dict)
  333. repeat_deal(content_json, node_dict)
  334. obj[ty] = content_json
  335. return get_json_result(data=obj)