Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

task_executor.py 22KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. # from beartype import BeartypeConf
  16. # from beartype.claw import beartype_all # <-- you didn't sign up for this
  17. # beartype_all(conf=BeartypeConf(violation_type=UserWarning)) # <-- emit warnings from all code
  18. import logging
  19. import sys
  20. import os
  21. from api.utils.log_utils import initRootLogger
  22. CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1]
  23. CONSUMER_NAME = "task_executor_" + CONSUMER_NO
  24. LOG_LEVELS = os.environ.get("LOG_LEVELS", "")
  25. initRootLogger(CONSUMER_NAME, LOG_LEVELS)
  26. from datetime import datetime
  27. import json
  28. import os
  29. import hashlib
  30. import copy
  31. import re
  32. import sys
  33. import time
  34. import threading
  35. from functools import partial
  36. from io import BytesIO
  37. from multiprocessing.context import TimeoutError
  38. from timeit import default_timer as timer
  39. import tracemalloc
  40. import numpy as np
  41. from api.db import LLMType, ParserType
  42. from api.db.services.dialog_service import keyword_extraction, question_proposal
  43. from api.db.services.document_service import DocumentService
  44. from api.db.services.llm_service import LLMBundle
  45. from api.db.services.task_service import TaskService
  46. from api.db.services.file2document_service import File2DocumentService
  47. from api import settings
  48. from api.versions import get_ragflow_version
  49. from api.db.db_models import close_connection
  50. from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, \
  51. knowledge_graph, email
  52. from rag.nlp import search, rag_tokenizer
  53. from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
  54. from rag.settings import DOC_MAXIMUM_SIZE, SVR_QUEUE_NAME, print_rag_settings
  55. from rag.utils import rmSpace, num_tokens_from_string
  56. from rag.utils.redis_conn import REDIS_CONN, Payload
  57. from rag.utils.storage_factory import STORAGE_IMPL
  58. BATCH_SIZE = 64
  59. FACTORY = {
  60. "general": naive,
  61. ParserType.NAIVE.value: naive,
  62. ParserType.PAPER.value: paper,
  63. ParserType.BOOK.value: book,
  64. ParserType.PRESENTATION.value: presentation,
  65. ParserType.MANUAL.value: manual,
  66. ParserType.LAWS.value: laws,
  67. ParserType.QA.value: qa,
  68. ParserType.TABLE.value: table,
  69. ParserType.RESUME.value: resume,
  70. ParserType.PICTURE.value: picture,
  71. ParserType.ONE.value: one,
  72. ParserType.AUDIO.value: audio,
  73. ParserType.EMAIL.value: email,
  74. ParserType.KG.value: knowledge_graph
  75. }
  76. CONSUMER_NAME = "task_consumer_" + CONSUMER_NO
  77. PAYLOAD: Payload | None = None
  78. BOOT_AT = datetime.now().isoformat()
  79. PENDING_TASKS = 0
  80. LAG_TASKS = 0
  81. mt_lock = threading.Lock()
  82. DONE_TASKS = 0
  83. FAILED_TASKS = 0
  84. CURRENT_TASK = None
  85. def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
  86. global PAYLOAD
  87. if prog is not None and prog < 0:
  88. msg = "[ERROR]" + msg
  89. cancel = TaskService.do_cancel(task_id)
  90. if cancel:
  91. msg += " [Canceled]"
  92. prog = -1
  93. if to_page > 0:
  94. if msg:
  95. msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
  96. d = {"progress_msg": msg}
  97. if prog is not None:
  98. d["progress"] = prog
  99. try:
  100. logging.info(f"set_progress({task_id}), progress: {prog}, progress_msg: {msg}")
  101. TaskService.update_progress(task_id, d)
  102. except Exception:
  103. logging.exception(f"set_progress({task_id}) got exception")
  104. close_connection()
  105. if cancel:
  106. if PAYLOAD:
  107. PAYLOAD.ack()
  108. PAYLOAD = None
  109. os._exit(0)
  110. def collect():
  111. global CONSUMER_NAME, PAYLOAD, DONE_TASKS, FAILED_TASKS
  112. try:
  113. PAYLOAD = REDIS_CONN.get_unacked_for(CONSUMER_NAME, SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
  114. if not PAYLOAD:
  115. PAYLOAD = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", CONSUMER_NAME)
  116. if not PAYLOAD:
  117. time.sleep(1)
  118. return None
  119. except Exception:
  120. logging.exception("Get task event from queue exception")
  121. return None
  122. msg = PAYLOAD.get_message()
  123. if not msg:
  124. return None
  125. if TaskService.do_cancel(msg["id"]):
  126. with mt_lock:
  127. DONE_TASKS += 1
  128. logging.info("Task {} has been canceled.".format(msg["id"]))
  129. return None
  130. task = TaskService.get_task(msg["id"])
  131. if not task:
  132. with mt_lock:
  133. DONE_TASKS += 1
  134. logging.warning("{} empty task!".format(msg["id"]))
  135. return None
  136. if msg.get("type", "") == "raptor":
  137. task["task_type"] = "raptor"
  138. return task
  139. def get_storage_binary(bucket, name):
  140. return STORAGE_IMPL.get(bucket, name)
  141. def build_chunks(task, progress_callback):
  142. if task["size"] > DOC_MAXIMUM_SIZE:
  143. set_progress(task["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
  144. (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
  145. return []
  146. chunker = FACTORY[task["parser_id"].lower()]
  147. try:
  148. st = timer()
  149. bucket, name = File2DocumentService.get_storage_address(doc_id=task["doc_id"])
  150. binary = get_storage_binary(bucket, name)
  151. logging.info("From minio({}) {}/{}".format(timer() - st, task["location"], task["name"]))
  152. except TimeoutError:
  153. progress_callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.")
  154. logging.exception("Minio {}/{} got timeout: Fetch file from minio timeout.".format(task["location"], task["name"]))
  155. raise
  156. except Exception as e:
  157. if re.search("(No such file|not found)", str(e)):
  158. progress_callback(-1, "Can not find file <%s> from minio. Could you try it again?" % task["name"])
  159. else:
  160. progress_callback(-1, "Get file from minio: %s" % str(e).replace("'", ""))
  161. logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"]))
  162. raise
  163. try:
  164. cks = chunker.chunk(task["name"], binary=binary, from_page=task["from_page"],
  165. to_page=task["to_page"], lang=task["language"], callback=progress_callback,
  166. kb_id=task["kb_id"], parser_config=task["parser_config"], tenant_id=task["tenant_id"])
  167. logging.info("Chunking({}) {}/{} done".format(timer() - st, task["location"], task["name"]))
  168. except Exception as e:
  169. progress_callback(-1, "Internal server error while chunking: %s" % str(e).replace("'", ""))
  170. logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"]))
  171. raise
  172. docs = []
  173. doc = {
  174. "doc_id": task["doc_id"],
  175. "kb_id": str(task["kb_id"])
  176. }
  177. if task["pagerank"]: doc["pagerank_fea"] = int(task["pagerank"])
  178. el = 0
  179. for ck in cks:
  180. d = copy.deepcopy(doc)
  181. d.update(ck)
  182. md5 = hashlib.md5()
  183. md5.update((ck["content_with_weight"] +
  184. str(d["doc_id"])).encode("utf-8"))
  185. d["id"] = md5.hexdigest()
  186. d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
  187. d["create_timestamp_flt"] = datetime.now().timestamp()
  188. if not d.get("image"):
  189. _ = d.pop("image", None)
  190. d["img_id"] = ""
  191. d["page_num_list"] = json.dumps([])
  192. d["position_list"] = json.dumps([])
  193. d["top_list"] = json.dumps([])
  194. docs.append(d)
  195. continue
  196. try:
  197. output_buffer = BytesIO()
  198. if isinstance(d["image"], bytes):
  199. output_buffer = BytesIO(d["image"])
  200. else:
  201. d["image"].save(output_buffer, format='JPEG')
  202. st = timer()
  203. STORAGE_IMPL.put(task["kb_id"], d["id"], output_buffer.getvalue())
  204. el += timer() - st
  205. except Exception:
  206. logging.exception("Saving image of chunk {}/{}/{} got exception".format(task["location"], task["name"], d["_id"]))
  207. raise
  208. d["img_id"] = "{}-{}".format(task["kb_id"], d["id"])
  209. del d["image"]
  210. docs.append(d)
  211. logging.info("MINIO PUT({}):{}".format(task["name"], el))
  212. if task["parser_config"].get("auto_keywords", 0):
  213. st = timer()
  214. progress_callback(msg="Start to generate keywords for every chunk ...")
  215. chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
  216. for d in docs:
  217. d["important_kwd"] = keyword_extraction(chat_mdl, d["content_with_weight"],
  218. task["parser_config"]["auto_keywords"]).split(",")
  219. d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
  220. progress_callback(msg="Keywords generation completed in {:.2f}s".format(timer() - st))
  221. if task["parser_config"].get("auto_questions", 0):
  222. st = timer()
  223. progress_callback(msg="Start to generate questions for every chunk ...")
  224. chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
  225. for d in docs:
  226. qst = question_proposal(chat_mdl, d["content_with_weight"], task["parser_config"]["auto_questions"])
  227. d["content_with_weight"] = f"Question: \n{qst}\n\nAnswer:\n" + d["content_with_weight"]
  228. qst = rag_tokenizer.tokenize(qst)
  229. if "content_ltks" in d:
  230. d["content_ltks"] += " " + qst
  231. if "content_sm_ltks" in d:
  232. d["content_sm_ltks"] += " " + rag_tokenizer.fine_grained_tokenize(qst)
  233. progress_callback(msg="Question generation completed in {:.2f}s".format(timer() - st))
  234. return docs
  235. def init_kb(row, vector_size: int):
  236. idxnm = search.index_name(row["tenant_id"])
  237. return settings.docStoreConn.createIdx(idxnm, row["kb_id"], vector_size)
  238. def embedding(docs, mdl, parser_config=None, callback=None):
  239. if parser_config is None:
  240. parser_config = {}
  241. batch_size = 32
  242. tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
  243. re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
  244. tk_count = 0
  245. if len(tts) == len(cnts):
  246. tts_ = np.array([])
  247. for i in range(0, len(tts), batch_size):
  248. vts, c = mdl.encode(tts[i: i + batch_size])
  249. if len(tts_) == 0:
  250. tts_ = vts
  251. else:
  252. tts_ = np.concatenate((tts_, vts), axis=0)
  253. tk_count += c
  254. callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
  255. tts = tts_
  256. cnts_ = np.array([])
  257. for i in range(0, len(cnts), batch_size):
  258. vts, c = mdl.encode(cnts[i: i + batch_size])
  259. if len(cnts_) == 0:
  260. cnts_ = vts
  261. else:
  262. cnts_ = np.concatenate((cnts_, vts), axis=0)
  263. tk_count += c
  264. callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
  265. cnts = cnts_
  266. title_w = float(parser_config.get("filename_embd_weight", 0.1))
  267. vects = (title_w * tts + (1 - title_w) *
  268. cnts) if len(tts) == len(cnts) else cnts
  269. assert len(vects) == len(docs)
  270. vector_size = 0
  271. for i, d in enumerate(docs):
  272. v = vects[i].tolist()
  273. vector_size = len(v)
  274. d["q_%d_vec" % len(v)] = v
  275. return tk_count, vector_size
  276. def run_raptor(row, chat_mdl, embd_mdl, callback=None):
  277. vts, _ = embd_mdl.encode(["ok"])
  278. vector_size = len(vts[0])
  279. vctr_nm = "q_%d_vec" % vector_size
  280. chunks = []
  281. for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],
  282. fields=["content_with_weight", vctr_nm]):
  283. chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
  284. raptor = Raptor(
  285. row["parser_config"]["raptor"].get("max_cluster", 64),
  286. chat_mdl,
  287. embd_mdl,
  288. row["parser_config"]["raptor"]["prompt"],
  289. row["parser_config"]["raptor"]["max_token"],
  290. row["parser_config"]["raptor"]["threshold"]
  291. )
  292. original_length = len(chunks)
  293. chunks = raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
  294. doc = {
  295. "doc_id": row["doc_id"],
  296. "kb_id": [str(row["kb_id"])],
  297. "docnm_kwd": row["name"],
  298. "title_tks": rag_tokenizer.tokenize(row["name"])
  299. }
  300. if row["pagerank"]: doc["pagerank_fea"] = int(row["pagerank"])
  301. res = []
  302. tk_count = 0
  303. for content, vctr in chunks[original_length:]:
  304. d = copy.deepcopy(doc)
  305. md5 = hashlib.md5()
  306. md5.update((content + str(d["doc_id"])).encode("utf-8"))
  307. d["id"] = md5.hexdigest()
  308. d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
  309. d["create_timestamp_flt"] = datetime.now().timestamp()
  310. d[vctr_nm] = vctr.tolist()
  311. d["content_with_weight"] = content
  312. d["content_ltks"] = rag_tokenizer.tokenize(content)
  313. d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
  314. res.append(d)
  315. tk_count += num_tokens_from_string(content)
  316. return res, tk_count, vector_size
  317. def do_handle_task(task):
  318. task_id = task["id"]
  319. task_from_page = task["from_page"]
  320. task_to_page = task["to_page"]
  321. task_tenant_id = task["tenant_id"]
  322. task_embedding_id = task["embd_id"]
  323. task_language = task["language"]
  324. task_llm_id = task["llm_id"]
  325. task_dataset_id = task["kb_id"]
  326. task_doc_id = task["doc_id"]
  327. task_document_name = task["name"]
  328. task_parser_config = task["parser_config"]
  329. # prepare the progress callback function
  330. progress_callback = partial(set_progress, task_id, task_from_page, task_to_page)
  331. try:
  332. # bind embedding model
  333. embedding_model = LLMBundle(task_tenant_id, LLMType.EMBEDDING, llm_name=task_embedding_id, lang=task_language)
  334. except Exception as e:
  335. error_message = f'Fail to bind embedding model: {str(e)}'
  336. progress_callback(-1, msg=error_message)
  337. logging.exception(error_message)
  338. raise
  339. # Either using RAPTOR or Standard chunking methods
  340. if task.get("task_type", "") == "raptor":
  341. try:
  342. # bind LLM for raptor
  343. chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
  344. # run RAPTOR
  345. chunks, token_count, vector_size = run_raptor(task, chat_model, embedding_model, progress_callback)
  346. except Exception as e:
  347. error_message = f'Fail to bind LLM used by RAPTOR: {str(e)}'
  348. progress_callback(-1, msg=error_message)
  349. logging.exception(error_message)
  350. raise
  351. else:
  352. # Standard chunking methods
  353. start_ts = timer()
  354. chunks = build_chunks(task, progress_callback)
  355. logging.info("Build document {}: {:.2f}s".format(task_document_name, timer() - start_ts))
  356. if chunks is None:
  357. return
  358. if not chunks:
  359. progress_callback(1., msg=f"No chunk built from {task_document_name}")
  360. return
  361. # TODO: exception handler
  362. ## set_progress(task["did"], -1, "ERROR: ")
  363. progress_callback(msg="Generate {} chunks".format(len(chunks)))
  364. start_ts = timer()
  365. try:
  366. token_count, vector_size = embedding(chunks, embedding_model, task_parser_config, progress_callback)
  367. except Exception as e:
  368. error_message = "Generate embedding error:{}".format(str(e))
  369. progress_callback(-1, error_message)
  370. logging.exception(error_message)
  371. token_count = 0
  372. raise
  373. progress_message = "Embedding chunks ({:.2f}s)".format(timer() - start_ts)
  374. logging.info(progress_message)
  375. progress_callback(msg=progress_message)
  376. # logging.info(f"task_executor init_kb index {search.index_name(task_tenant_id)} embedding_model {embedding_model.llm_name} vector length {vector_size}")
  377. init_kb(task, vector_size)
  378. chunk_count = len(set([chunk["id"] for chunk in chunks]))
  379. start_ts = timer()
  380. doc_store_result = ""
  381. es_bulk_size = 4
  382. for b in range(0, len(chunks), es_bulk_size):
  383. doc_store_result = settings.docStoreConn.insert(chunks[b:b + es_bulk_size], search.index_name(task_tenant_id), task_dataset_id)
  384. if b % 128 == 0:
  385. progress_callback(prog=0.8 + 0.1 * (b + 1) / len(chunks), msg="")
  386. logging.info("Indexing {} elapsed: {:.2f}".format(task_document_name, timer() - start_ts))
  387. if doc_store_result:
  388. error_message = f"Insert chunk error: {doc_store_result}, please check log file and Elasticsearch/Infinity status!"
  389. progress_callback(-1, msg=error_message)
  390. settings.docStoreConn.delete({"doc_id": task_doc_id}, search.index_name(task_tenant_id), task_dataset_id)
  391. logging.error(error_message)
  392. raise Exception(error_message)
  393. if TaskService.do_cancel(task_id):
  394. settings.docStoreConn.delete({"doc_id": task_doc_id}, search.index_name(task_tenant_id), task_dataset_id)
  395. return
  396. DocumentService.increment_chunk_num(task_doc_id, task_dataset_id, token_count, chunk_count, 0)
  397. time_cost = timer() - start_ts
  398. progress_callback(prog=1.0, msg="Done ({:.2f}s)".format(time_cost))
  399. logging.info("Chunk doc({}), token({}), chunks({}), elapsed:{:.2f}".format(task_id, token_count, len(chunks), time_cost))
  400. def handle_task():
  401. global PAYLOAD, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK
  402. task = collect()
  403. if task:
  404. try:
  405. logging.info(f"handle_task begin for task {json.dumps(task)}")
  406. with mt_lock:
  407. CURRENT_TASK = copy.deepcopy(task)
  408. do_handle_task(task)
  409. with mt_lock:
  410. DONE_TASKS += 1
  411. CURRENT_TASK = None
  412. logging.info(f"handle_task done for task {json.dumps(task)}")
  413. except Exception:
  414. with mt_lock:
  415. FAILED_TASKS += 1
  416. CURRENT_TASK = None
  417. logging.exception(f"handle_task got exception for task {json.dumps(task)}")
  418. if PAYLOAD:
  419. PAYLOAD.ack()
  420. PAYLOAD = None
  421. def report_status():
  422. global CONSUMER_NAME, BOOT_AT, PENDING_TASKS, LAG_TASKS, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK
  423. REDIS_CONN.sadd("TASKEXE", CONSUMER_NAME)
  424. while True:
  425. try:
  426. now = datetime.now()
  427. group_info = REDIS_CONN.queue_info(SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
  428. if group_info is not None:
  429. PENDING_TASKS = int(group_info["pending"])
  430. LAG_TASKS = int(group_info["lag"])
  431. with mt_lock:
  432. heartbeat = json.dumps({
  433. "name": CONSUMER_NAME,
  434. "now": now.isoformat(),
  435. "boot_at": BOOT_AT,
  436. "pending": PENDING_TASKS,
  437. "lag": LAG_TASKS,
  438. "done": DONE_TASKS,
  439. "failed": FAILED_TASKS,
  440. "current": CURRENT_TASK,
  441. })
  442. REDIS_CONN.zadd(CONSUMER_NAME, heartbeat, now.timestamp())
  443. logging.info(f"{CONSUMER_NAME} reported heartbeat: {heartbeat}")
  444. expired = REDIS_CONN.zcount(CONSUMER_NAME, 0, now.timestamp() - 60 * 30)
  445. if expired > 0:
  446. REDIS_CONN.zpopmin(CONSUMER_NAME, expired)
  447. except Exception:
  448. logging.exception("report_status got exception")
  449. time.sleep(30)
  450. def analyze_heap(snapshot1: tracemalloc.Snapshot, snapshot2: tracemalloc.Snapshot, snapshot_id: int, dump_full: bool):
  451. msg = ""
  452. if dump_full:
  453. stats2 = snapshot2.statistics('lineno')
  454. msg += f"{CONSUMER_NAME} memory usage of snapshot {snapshot_id}:\n"
  455. for stat in stats2[:10]:
  456. msg += f"{stat}\n"
  457. stats1_vs_2 = snapshot2.compare_to(snapshot1, 'lineno')
  458. msg += f"{CONSUMER_NAME} memory usage increase from snapshot {snapshot_id - 1} to snapshot {snapshot_id}:\n"
  459. for stat in stats1_vs_2[:10]:
  460. msg += f"{stat}\n"
  461. msg += f"{CONSUMER_NAME} detailed traceback for the top memory consumers:\n"
  462. for stat in stats1_vs_2[:3]:
  463. msg += '\n'.join(stat.traceback.format())
  464. logging.info(msg)
  465. def main():
  466. logging.info(r"""
  467. ______ __ ______ __
  468. /_ __/___ ______/ /__ / ____/ _____ _______ __/ /_____ _____
  469. / / / __ `/ ___/ //_/ / __/ | |/_/ _ \/ ___/ / / / __/ __ \/ ___/
  470. / / / /_/ (__ ) ,< / /____> </ __/ /__/ /_/ / /_/ /_/ / /
  471. /_/ \__,_/____/_/|_| /_____/_/|_|\___/\___/\__,_/\__/\____/_/
  472. """)
  473. logging.info(f'TaskExecutor: RAGFlow version: {get_ragflow_version()}')
  474. settings.init_settings()
  475. print_rag_settings()
  476. background_thread = threading.Thread(target=report_status)
  477. background_thread.daemon = True
  478. background_thread.start()
  479. TRACE_MALLOC_DELTA = int(os.environ.get('TRACE_MALLOC_DELTA', "0"))
  480. TRACE_MALLOC_FULL = int(os.environ.get('TRACE_MALLOC_FULL', "0"))
  481. if TRACE_MALLOC_DELTA > 0:
  482. if TRACE_MALLOC_FULL < TRACE_MALLOC_DELTA:
  483. TRACE_MALLOC_FULL = TRACE_MALLOC_DELTA
  484. tracemalloc.start()
  485. snapshot1 = tracemalloc.take_snapshot()
  486. while True:
  487. handle_task()
  488. num_tasks = DONE_TASKS + FAILED_TASKS
  489. if TRACE_MALLOC_DELTA > 0 and num_tasks > 0 and num_tasks % TRACE_MALLOC_DELTA == 0:
  490. snapshot2 = tracemalloc.take_snapshot()
  491. analyze_heap(snapshot1, snapshot2, int(num_tasks / TRACE_MALLOC_DELTA), num_tasks % TRACE_MALLOC_FULL == 0)
  492. snapshot1 = snapshot2
  493. snapshot2 = None
  494. if __name__ == "__main__":
  495. main()