| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
-
- from openpyxl import load_workbook, Workbook
- import sys
- from io import BytesIO
-
- from rag.nlp import find_codec
-
- import pandas as pd
-
-
- class RAGFlowExcelParser:
- def html(self, fnm, chunk_rows=256):
-
- # if isinstance(fnm, str):
- # wb = load_workbook(fnm)
- # else:
- # wb = load_workbook(BytesIO(fnm))++
-
- s_fnm = fnm
- if not isinstance(fnm, str):
- s_fnm = BytesIO(fnm)
- else:
- pass
-
- try:
- wb = load_workbook(s_fnm)
- except Exception as e:
- print(f'****wxy: file parser error: {e}, s_fnm={s_fnm}, trying convert files')
- df = pd.read_excel(s_fnm)
- wb = Workbook()
- # if len(wb.worksheets) > 0:
- # del wb.worksheets[0]
- # else: pass
- ws = wb.active
- ws.title = "Data"
- for col_num, column_name in enumerate(df.columns, 1):
- ws.cell(row=1, column=col_num, value=column_name)
- else:
- pass
- for row_num, row in enumerate(df.values, 2):
- for col_num, value in enumerate(row, 1):
- ws.cell(row=row_num, column=col_num, value=value)
- else:
- pass
- else:
- pass
-
- tb_chunks = []
- for sheetname in wb.sheetnames:
- ws = wb[sheetname]
- rows = list(ws.rows)
- if not rows:
- continue
-
- tb_rows_0 = "<tr>"
- for t in list(rows[0]):
- tb_rows_0 += f"<th>{t.value}</th>"
- tb_rows_0 += "</tr>"
-
- for chunk_i in range((len(rows) - 1) // chunk_rows + 1):
- tb = ""
- tb += f"<table><caption>{sheetname}</caption>"
- tb += tb_rows_0
- for r in list(
- rows[1 + chunk_i * chunk_rows: 1 + (chunk_i + 1) * chunk_rows]
- ):
- tb += "<tr>"
- for i, c in enumerate(r):
- if c.value is None:
- tb += "<td></td>"
- else:
- tb += f"<td>{c.value}</td>"
- tb += "</tr>"
- tb += "</table>\n"
- tb_chunks.append(tb)
-
- return tb_chunks
-
- def __call__(self, fnm):
- # if isinstance(fnm, str):
- # wb = load_workbook(fnm)
- # else:
- # wb = load_workbook(BytesIO(fnm))
-
- s_fnm = fnm
- if not isinstance(fnm, str):
- s_fnm = BytesIO(fnm)
- else:
- pass
-
- try:
- wb = load_workbook(s_fnm)
- except Exception as e:
- print(f'****wxy: file parser error: {e}, s_fnm={s_fnm}, trying convert files')
- df = pd.read_excel(s_fnm)
- wb = Workbook()
- if len(wb.worksheets) > 0:
- del wb.worksheets[0]
- else:
- pass
- ws = wb.active
- ws.title = "Data"
- for col_num, column_name in enumerate(df.columns, 1):
- ws.cell(row=1, column=col_num, value=column_name)
- else:
- pass
- for row_num, row in enumerate(df.values, 2):
- for col_num, value in enumerate(row, 1):
- ws.cell(row=row_num, column=col_num, value=value)
- else:
- pass
- else:
- pass
-
- res = []
- for sheetname in wb.sheetnames:
- ws = wb[sheetname]
- rows = list(ws.rows)
- if not rows:
- continue
- ti = list(rows[0])
- for r in list(rows[1:]):
- fields = []
- for i, c in enumerate(r):
- if not c.value:
- continue
- t = str(ti[i].value) if i < len(ti) else ""
- t += (":" if t else "") + str(c.value)
- fields.append(t)
- line = "; ".join(fields)
- if sheetname.lower().find("sheet") < 0:
- line += " ——" + sheetname
- res.append(line)
- return res
-
- @staticmethod
- def row_number(fnm, binary):
- if fnm.split(".")[-1].lower().find("xls") >= 0:
- wb = load_workbook(BytesIO(binary))
- total = 0
- for sheetname in wb.sheetnames:
- ws = wb[sheetname]
- total += len(list(ws.rows))
- return total
-
- if fnm.split(".")[-1].lower() in ["csv", "txt"]:
- encoding = find_codec(binary)
- txt = binary.decode(encoding, errors="ignore")
- return len(txt.split("\n"))
-
-
- if __name__ == "__main__":
- psr = RAGFlowExcelParser()
- psr(sys.argv[1])
|