You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

embedding_model.py 33KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import json
  17. import logging
  18. import os
  19. import re
  20. import threading
  21. from abc import ABC
  22. from urllib.parse import urljoin
  23. import dashscope
  24. import google.generativeai as genai
  25. import numpy as np
  26. import requests
  27. from huggingface_hub import snapshot_download
  28. from ollama import Client
  29. from openai import OpenAI
  30. from zhipuai import ZhipuAI
  31. from api import settings
  32. from api.utils.file_utils import get_home_cache_dir
  33. from api.utils.log_utils import log_exception
  34. from rag.utils import num_tokens_from_string, truncate
  35. class Base(ABC):
  36. def __init__(self, key, model_name):
  37. pass
  38. def encode(self, texts: list):
  39. raise NotImplementedError("Please implement encode method!")
  40. def encode_queries(self, text: str):
  41. raise NotImplementedError("Please implement encode method!")
  42. def total_token_count(self, resp):
  43. try:
  44. return resp.usage.total_tokens
  45. except Exception:
  46. pass
  47. try:
  48. return resp["usage"]["total_tokens"]
  49. except Exception:
  50. pass
  51. return 0
  52. class DefaultEmbedding(Base):
  53. _FACTORY_NAME = "BAAI"
  54. os.environ["CUDA_VISIBLE_DEVICES"] = "0"
  55. _model = None
  56. _model_name = ""
  57. _model_lock = threading.Lock()
  58. def __init__(self, key, model_name, **kwargs):
  59. """
  60. If you have trouble downloading HuggingFace models, -_^ this might help!!
  61. For Linux:
  62. export HF_ENDPOINT=https://hf-mirror.com
  63. For Windows:
  64. Good luck
  65. ^_-
  66. """
  67. if not settings.LIGHTEN:
  68. with DefaultEmbedding._model_lock:
  69. import torch
  70. from FlagEmbedding import FlagModel
  71. if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
  72. try:
  73. DefaultEmbedding._model = FlagModel(
  74. os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
  75. query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
  76. use_fp16=torch.cuda.is_available(),
  77. )
  78. DefaultEmbedding._model_name = model_name
  79. except Exception:
  80. model_dir = snapshot_download(
  81. repo_id="BAAI/bge-large-zh-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
  82. )
  83. DefaultEmbedding._model = FlagModel(model_dir, query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=torch.cuda.is_available())
  84. self._model = DefaultEmbedding._model
  85. self._model_name = DefaultEmbedding._model_name
  86. def encode(self, texts: list):
  87. batch_size = 16
  88. texts = [truncate(t, 2048) for t in texts]
  89. token_count = 0
  90. for t in texts:
  91. token_count += num_tokens_from_string(t)
  92. ress = None
  93. for i in range(0, len(texts), batch_size):
  94. if ress is None:
  95. ress = self._model.encode(texts[i : i + batch_size], convert_to_numpy=True)
  96. else:
  97. ress = np.concatenate((ress, self._model.encode(texts[i : i + batch_size], convert_to_numpy=True)), axis=0)
  98. return ress, token_count
  99. def encode_queries(self, text: str):
  100. token_count = num_tokens_from_string(text)
  101. return self._model.encode_queries([text], convert_to_numpy=False)[0][0].cpu().numpy(), token_count
  102. class OpenAIEmbed(Base):
  103. _FACTORY_NAME = "OpenAI"
  104. def __init__(self, key, model_name="text-embedding-ada-002", base_url="https://api.openai.com/v1"):
  105. if not base_url:
  106. base_url = "https://api.openai.com/v1"
  107. self.client = OpenAI(api_key=key, base_url=base_url)
  108. self.model_name = model_name
  109. def encode(self, texts: list):
  110. # OpenAI requires batch size <=16
  111. batch_size = 16
  112. texts = [truncate(t, 8191) for t in texts]
  113. ress = []
  114. total_tokens = 0
  115. for i in range(0, len(texts), batch_size):
  116. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  117. try:
  118. ress.extend([d.embedding for d in res.data])
  119. total_tokens += self.total_token_count(res)
  120. except Exception as _e:
  121. log_exception(_e, res)
  122. return np.array(ress), total_tokens
  123. def encode_queries(self, text):
  124. res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name)
  125. return np.array(res.data[0].embedding), self.total_token_count(res)
  126. class LocalAIEmbed(Base):
  127. _FACTORY_NAME = "LocalAI"
  128. def __init__(self, key, model_name, base_url):
  129. if not base_url:
  130. raise ValueError("Local embedding model url cannot be None")
  131. base_url = urljoin(base_url, "v1")
  132. self.client = OpenAI(api_key="empty", base_url=base_url)
  133. self.model_name = model_name.split("___")[0]
  134. def encode(self, texts: list):
  135. batch_size = 16
  136. ress = []
  137. for i in range(0, len(texts), batch_size):
  138. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  139. try:
  140. ress.extend([d.embedding for d in res.data])
  141. except Exception as _e:
  142. log_exception(_e, res)
  143. # local embedding for LmStudio donot count tokens
  144. return np.array(ress), 1024
  145. def encode_queries(self, text):
  146. embds, cnt = self.encode([text])
  147. return np.array(embds[0]), cnt
  148. class AzureEmbed(OpenAIEmbed):
  149. _FACTORY_NAME = "Azure-OpenAI"
  150. def __init__(self, key, model_name, **kwargs):
  151. from openai.lib.azure import AzureOpenAI
  152. api_key = json.loads(key).get("api_key", "")
  153. api_version = json.loads(key).get("api_version", "2024-02-01")
  154. self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
  155. self.model_name = model_name
  156. class BaiChuanEmbed(OpenAIEmbed):
  157. _FACTORY_NAME = "BaiChuan"
  158. def __init__(self, key, model_name="Baichuan-Text-Embedding", base_url="https://api.baichuan-ai.com/v1"):
  159. if not base_url:
  160. base_url = "https://api.baichuan-ai.com/v1"
  161. super().__init__(key, model_name, base_url)
  162. class QWenEmbed(Base):
  163. _FACTORY_NAME = "Tongyi-Qianwen"
  164. def __init__(self, key, model_name="text_embedding_v2", **kwargs):
  165. self.key = key
  166. self.model_name = model_name
  167. def encode(self, texts: list):
  168. import time
  169. import dashscope
  170. batch_size = 4
  171. res = []
  172. token_count = 0
  173. texts = [truncate(t, 2048) for t in texts]
  174. for i in range(0, len(texts), batch_size):
  175. retry_max = 5
  176. resp = dashscope.TextEmbedding.call(model=self.model_name, input=texts[i : i + batch_size], api_key=self.key, text_type="document")
  177. while (resp["output"] is None or resp["output"].get("embeddings") is None) and retry_max > 0:
  178. time.sleep(10)
  179. resp = dashscope.TextEmbedding.call(model=self.model_name, input=texts[i : i + batch_size], api_key=self.key, text_type="document")
  180. retry_max -= 1
  181. if retry_max == 0 and (resp["output"] is None or resp["output"].get("embeddings") is None):
  182. if resp.get("message"):
  183. log_exception(ValueError(f"Retry_max reached, calling embedding model failed: {resp['message']}"))
  184. else:
  185. log_exception(ValueError("Retry_max reached, calling embedding model failed"))
  186. raise
  187. try:
  188. embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
  189. for e in resp["output"]["embeddings"]:
  190. embds[e["text_index"]] = e["embedding"]
  191. res.extend(embds)
  192. token_count += self.total_token_count(resp)
  193. except Exception as _e:
  194. log_exception(_e, resp)
  195. raise
  196. return np.array(res), token_count
  197. def encode_queries(self, text):
  198. resp = dashscope.TextEmbedding.call(model=self.model_name, input=text[:2048], api_key=self.key, text_type="query")
  199. try:
  200. return np.array(resp["output"]["embeddings"][0]["embedding"]), self.total_token_count(resp)
  201. except Exception as _e:
  202. log_exception(_e, resp)
  203. class ZhipuEmbed(Base):
  204. _FACTORY_NAME = "ZHIPU-AI"
  205. def __init__(self, key, model_name="embedding-2", **kwargs):
  206. self.client = ZhipuAI(api_key=key)
  207. self.model_name = model_name
  208. def encode(self, texts: list):
  209. arr = []
  210. tks_num = 0
  211. MAX_LEN = -1
  212. if self.model_name.lower() == "embedding-2":
  213. MAX_LEN = 512
  214. if self.model_name.lower() == "embedding-3":
  215. MAX_LEN = 3072
  216. if MAX_LEN > 0:
  217. texts = [truncate(t, MAX_LEN) for t in texts]
  218. for txt in texts:
  219. res = self.client.embeddings.create(input=txt, model=self.model_name)
  220. try:
  221. arr.append(res.data[0].embedding)
  222. tks_num += self.total_token_count(res)
  223. except Exception as _e:
  224. log_exception(_e, res)
  225. return np.array(arr), tks_num
  226. def encode_queries(self, text):
  227. res = self.client.embeddings.create(input=text, model=self.model_name)
  228. try:
  229. return np.array(res.data[0].embedding), self.total_token_count(res)
  230. except Exception as _e:
  231. log_exception(_e, res)
  232. class OllamaEmbed(Base):
  233. _FACTORY_NAME = "Ollama"
  234. _special_tokens = ["<|endoftext|>"]
  235. def __init__(self, key, model_name, **kwargs):
  236. self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else Client(host=kwargs["base_url"], headers={"Authorization": f"Bearer {key}"})
  237. self.model_name = model_name
  238. self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1)))
  239. def encode(self, texts: list):
  240. arr = []
  241. tks_num = 0
  242. for txt in texts:
  243. # remove special tokens if they exist
  244. for token in OllamaEmbed._special_tokens:
  245. txt = txt.replace(token, "")
  246. res = self.client.embeddings(prompt=txt, model=self.model_name, options={"use_mmap": True}, keep_alive=self.keep_alive)
  247. try:
  248. arr.append(res["embedding"])
  249. except Exception as _e:
  250. log_exception(_e, res)
  251. tks_num += 128
  252. return np.array(arr), tks_num
  253. def encode_queries(self, text):
  254. # remove special tokens if they exist
  255. for token in OllamaEmbed._special_tokens:
  256. text = text.replace(token, "")
  257. res = self.client.embeddings(prompt=text, model=self.model_name, options={"use_mmap": True}, keep_alive=self.keep_alive)
  258. try:
  259. return np.array(res["embedding"]), 128
  260. except Exception as _e:
  261. log_exception(_e, res)
  262. class FastEmbed(DefaultEmbedding):
  263. _FACTORY_NAME = "FastEmbed"
  264. def __init__(
  265. self,
  266. key: str | None = None,
  267. model_name: str = "BAAI/bge-small-en-v1.5",
  268. cache_dir: str | None = None,
  269. threads: int | None = None,
  270. **kwargs,
  271. ):
  272. if not settings.LIGHTEN:
  273. with FastEmbed._model_lock:
  274. from fastembed import TextEmbedding
  275. if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
  276. try:
  277. DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
  278. DefaultEmbedding._model_name = model_name
  279. except Exception:
  280. cache_dir = snapshot_download(
  281. repo_id="BAAI/bge-small-en-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
  282. )
  283. DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
  284. self._model = DefaultEmbedding._model
  285. self._model_name = model_name
  286. def encode(self, texts: list):
  287. # Using the internal tokenizer to encode the texts and get the total
  288. # number of tokens
  289. encodings = self._model.model.tokenizer.encode_batch(texts)
  290. total_tokens = sum(len(e) for e in encodings)
  291. embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]
  292. return np.array(embeddings), total_tokens
  293. def encode_queries(self, text: str):
  294. # Using the internal tokenizer to encode the texts and get the total
  295. # number of tokens
  296. encoding = self._model.model.tokenizer.encode(text)
  297. embedding = next(self._model.query_embed(text))
  298. return np.array(embedding), len(encoding.ids)
  299. class XinferenceEmbed(Base):
  300. _FACTORY_NAME = "Xinference"
  301. def __init__(self, key, model_name="", base_url=""):
  302. base_url = urljoin(base_url, "v1")
  303. self.client = OpenAI(api_key=key, base_url=base_url)
  304. self.model_name = model_name
  305. def encode(self, texts: list):
  306. batch_size = 16
  307. ress = []
  308. total_tokens = 0
  309. for i in range(0, len(texts), batch_size):
  310. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  311. try:
  312. ress.extend([d.embedding for d in res.data])
  313. total_tokens += self.total_token_count(res)
  314. except Exception as _e:
  315. log_exception(_e, res)
  316. return np.array(ress), total_tokens
  317. def encode_queries(self, text):
  318. res = self.client.embeddings.create(input=[text], model=self.model_name)
  319. try:
  320. return np.array(res.data[0].embedding), self.total_token_count(res)
  321. except Exception as _e:
  322. log_exception(_e, res)
  323. class YoudaoEmbed(Base):
  324. _FACTORY_NAME = "Youdao"
  325. _client = None
  326. def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
  327. if not settings.LIGHTEN and not YoudaoEmbed._client:
  328. from BCEmbedding import EmbeddingModel as qanthing
  329. try:
  330. logging.info("LOADING BCE...")
  331. YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(get_home_cache_dir(), "bce-embedding-base_v1"))
  332. except Exception:
  333. YoudaoEmbed._client = qanthing(model_name_or_path=model_name.replace("maidalun1020", "InfiniFlow"))
  334. def encode(self, texts: list):
  335. batch_size = 10
  336. res = []
  337. token_count = 0
  338. for t in texts:
  339. token_count += num_tokens_from_string(t)
  340. for i in range(0, len(texts), batch_size):
  341. embds = YoudaoEmbed._client.encode(texts[i : i + batch_size])
  342. res.extend(embds)
  343. return np.array(res), token_count
  344. def encode_queries(self, text):
  345. embds = YoudaoEmbed._client.encode([text])
  346. return np.array(embds[0]), num_tokens_from_string(text)
  347. class JinaEmbed(Base):
  348. _FACTORY_NAME = "Jina"
  349. def __init__(self, key, model_name="jina-embeddings-v3", base_url="https://api.jina.ai/v1/embeddings"):
  350. self.base_url = "https://api.jina.ai/v1/embeddings"
  351. self.headers = {"Content-Type": "application/json", "Authorization": f"Bearer {key}"}
  352. self.model_name = model_name
  353. def encode(self, texts: list):
  354. texts = [truncate(t, 8196) for t in texts]
  355. batch_size = 16
  356. ress = []
  357. token_count = 0
  358. for i in range(0, len(texts), batch_size):
  359. data = {"model": self.model_name, "input": texts[i : i + batch_size], "encoding_type": "float"}
  360. response = requests.post(self.base_url, headers=self.headers, json=data)
  361. try:
  362. res = response.json()
  363. ress.extend([d["embedding"] for d in res["data"]])
  364. token_count += self.total_token_count(res)
  365. except Exception as _e:
  366. log_exception(_e, response)
  367. return np.array(ress), token_count
  368. def encode_queries(self, text):
  369. embds, cnt = self.encode([text])
  370. return np.array(embds[0]), cnt
  371. class MistralEmbed(Base):
  372. _FACTORY_NAME = "Mistral"
  373. def __init__(self, key, model_name="mistral-embed", base_url=None):
  374. from mistralai.client import MistralClient
  375. self.client = MistralClient(api_key=key)
  376. self.model_name = model_name
  377. def encode(self, texts: list):
  378. texts = [truncate(t, 8196) for t in texts]
  379. batch_size = 16
  380. ress = []
  381. token_count = 0
  382. for i in range(0, len(texts), batch_size):
  383. res = self.client.embeddings(input=texts[i : i + batch_size], model=self.model_name)
  384. try:
  385. ress.extend([d.embedding for d in res.data])
  386. token_count += self.total_token_count(res)
  387. except Exception as _e:
  388. log_exception(_e, res)
  389. return np.array(ress), token_count
  390. def encode_queries(self, text):
  391. res = self.client.embeddings(input=[truncate(text, 8196)], model=self.model_name)
  392. try:
  393. return np.array(res.data[0].embedding), self.total_token_count(res)
  394. except Exception as _e:
  395. log_exception(_e, res)
  396. class BedrockEmbed(Base):
  397. _FACTORY_NAME = "Bedrock"
  398. def __init__(self, key, model_name, **kwargs):
  399. import boto3
  400. self.bedrock_ak = json.loads(key).get("bedrock_ak", "")
  401. self.bedrock_sk = json.loads(key).get("bedrock_sk", "")
  402. self.bedrock_region = json.loads(key).get("bedrock_region", "")
  403. self.model_name = model_name
  404. if self.bedrock_ak == "" or self.bedrock_sk == "" or self.bedrock_region == "":
  405. # Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
  406. self.client = boto3.client("bedrock-runtime")
  407. else:
  408. self.client = boto3.client(service_name="bedrock-runtime", region_name=self.bedrock_region, aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
  409. def encode(self, texts: list):
  410. texts = [truncate(t, 8196) for t in texts]
  411. embeddings = []
  412. token_count = 0
  413. for text in texts:
  414. if self.model_name.split(".")[0] == "amazon":
  415. body = {"inputText": text}
  416. elif self.model_name.split(".")[0] == "cohere":
  417. body = {"texts": [text], "input_type": "search_document"}
  418. response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
  419. try:
  420. model_response = json.loads(response["body"].read())
  421. embeddings.extend([model_response["embedding"]])
  422. token_count += num_tokens_from_string(text)
  423. except Exception as _e:
  424. log_exception(_e, response)
  425. return np.array(embeddings), token_count
  426. def encode_queries(self, text):
  427. embeddings = []
  428. token_count = num_tokens_from_string(text)
  429. if self.model_name.split(".")[0] == "amazon":
  430. body = {"inputText": truncate(text, 8196)}
  431. elif self.model_name.split(".")[0] == "cohere":
  432. body = {"texts": [truncate(text, 8196)], "input_type": "search_query"}
  433. response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
  434. try:
  435. model_response = json.loads(response["body"].read())
  436. embeddings.extend(model_response["embedding"])
  437. except Exception as _e:
  438. log_exception(_e, response)
  439. return np.array(embeddings), token_count
  440. class GeminiEmbed(Base):
  441. _FACTORY_NAME = "Gemini"
  442. def __init__(self, key, model_name="models/text-embedding-004", **kwargs):
  443. self.key = key
  444. self.model_name = "models/" + model_name
  445. def encode(self, texts: list):
  446. texts = [truncate(t, 2048) for t in texts]
  447. token_count = sum(num_tokens_from_string(text) for text in texts)
  448. genai.configure(api_key=self.key)
  449. batch_size = 16
  450. ress = []
  451. for i in range(0, len(texts), batch_size):
  452. result = genai.embed_content(model=self.model_name, content=texts[i : i + batch_size], task_type="retrieval_document", title="Embedding of single string")
  453. try:
  454. ress.extend(result["embedding"])
  455. except Exception as _e:
  456. log_exception(_e, result)
  457. return np.array(ress), token_count
  458. def encode_queries(self, text):
  459. genai.configure(api_key=self.key)
  460. result = genai.embed_content(model=self.model_name, content=truncate(text, 2048), task_type="retrieval_document", title="Embedding of single string")
  461. token_count = num_tokens_from_string(text)
  462. try:
  463. return np.array(result["embedding"]), token_count
  464. except Exception as _e:
  465. log_exception(_e, result)
  466. class NvidiaEmbed(Base):
  467. _FACTORY_NAME = "NVIDIA"
  468. def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"):
  469. if not base_url:
  470. base_url = "https://integrate.api.nvidia.com/v1/embeddings"
  471. self.api_key = key
  472. self.base_url = base_url
  473. self.headers = {
  474. "accept": "application/json",
  475. "Content-Type": "application/json",
  476. "authorization": f"Bearer {self.api_key}",
  477. }
  478. self.model_name = model_name
  479. if model_name == "nvidia/embed-qa-4":
  480. self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
  481. self.model_name = "NV-Embed-QA"
  482. if model_name == "snowflake/arctic-embed-l":
  483. self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
  484. def encode(self, texts: list):
  485. batch_size = 16
  486. ress = []
  487. token_count = 0
  488. for i in range(0, len(texts), batch_size):
  489. payload = {
  490. "input": texts[i : i + batch_size],
  491. "input_type": "query",
  492. "model": self.model_name,
  493. "encoding_format": "float",
  494. "truncate": "END",
  495. }
  496. response = requests.post(self.base_url, headers=self.headers, json=payload)
  497. try:
  498. res = response.json()
  499. except Exception as _e:
  500. log_exception(_e, response)
  501. ress.extend([d["embedding"] for d in res["data"]])
  502. token_count += self.total_token_count(res)
  503. return np.array(ress), token_count
  504. def encode_queries(self, text):
  505. embds, cnt = self.encode([text])
  506. return np.array(embds[0]), cnt
  507. class LmStudioEmbed(LocalAIEmbed):
  508. _FACTORY_NAME = "LM-Studio"
  509. def __init__(self, key, model_name, base_url):
  510. if not base_url:
  511. raise ValueError("Local llm url cannot be None")
  512. base_url = urljoin(base_url, "v1")
  513. self.client = OpenAI(api_key="lm-studio", base_url=base_url)
  514. self.model_name = model_name
  515. class OpenAI_APIEmbed(OpenAIEmbed):
  516. _FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
  517. def __init__(self, key, model_name, base_url):
  518. if not base_url:
  519. raise ValueError("url cannot be None")
  520. base_url = urljoin(base_url, "v1")
  521. self.client = OpenAI(api_key=key, base_url=base_url)
  522. self.model_name = model_name.split("___")[0]
  523. class CoHereEmbed(Base):
  524. _FACTORY_NAME = "Cohere"
  525. def __init__(self, key, model_name, base_url=None):
  526. from cohere import Client
  527. self.client = Client(api_key=key)
  528. self.model_name = model_name
  529. def encode(self, texts: list):
  530. batch_size = 16
  531. ress = []
  532. token_count = 0
  533. for i in range(0, len(texts), batch_size):
  534. res = self.client.embed(
  535. texts=texts[i : i + batch_size],
  536. model=self.model_name,
  537. input_type="search_document",
  538. embedding_types=["float"],
  539. )
  540. try:
  541. ress.extend([d for d in res.embeddings.float])
  542. token_count += res.meta.billed_units.input_tokens
  543. except Exception as _e:
  544. log_exception(_e, res)
  545. return np.array(ress), token_count
  546. def encode_queries(self, text):
  547. res = self.client.embed(
  548. texts=[text],
  549. model=self.model_name,
  550. input_type="search_query",
  551. embedding_types=["float"],
  552. )
  553. try:
  554. return np.array(res.embeddings.float[0]), int(res.meta.billed_units.input_tokens)
  555. except Exception as _e:
  556. log_exception(_e, res)
  557. class TogetherAIEmbed(OpenAIEmbed):
  558. _FACTORY_NAME = "TogetherAI"
  559. def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
  560. if not base_url:
  561. base_url = "https://api.together.xyz/v1"
  562. super().__init__(key, model_name, base_url=base_url)
  563. class PerfXCloudEmbed(OpenAIEmbed):
  564. _FACTORY_NAME = "PerfXCloud"
  565. def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
  566. if not base_url:
  567. base_url = "https://cloud.perfxlab.cn/v1"
  568. super().__init__(key, model_name, base_url)
  569. class UpstageEmbed(OpenAIEmbed):
  570. _FACTORY_NAME = "Upstage"
  571. def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
  572. if not base_url:
  573. base_url = "https://api.upstage.ai/v1/solar"
  574. super().__init__(key, model_name, base_url)
  575. class SILICONFLOWEmbed(Base):
  576. _FACTORY_NAME = "SILICONFLOW"
  577. def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"):
  578. if not base_url:
  579. base_url = "https://api.siliconflow.cn/v1/embeddings"
  580. self.headers = {
  581. "accept": "application/json",
  582. "content-type": "application/json",
  583. "authorization": f"Bearer {key}",
  584. }
  585. self.base_url = base_url
  586. self.model_name = model_name
  587. def encode(self, texts: list):
  588. batch_size = 16
  589. ress = []
  590. token_count = 0
  591. for i in range(0, len(texts), batch_size):
  592. texts_batch = texts[i : i + batch_size]
  593. payload = {
  594. "model": self.model_name,
  595. "input": texts_batch,
  596. "encoding_format": "float",
  597. }
  598. response = requests.post(self.base_url, json=payload, headers=self.headers)
  599. try:
  600. res = response.json()
  601. ress.extend([d["embedding"] for d in res["data"]])
  602. token_count += self.total_token_count(res)
  603. except Exception as _e:
  604. log_exception(_e, response)
  605. return np.array(ress), token_count
  606. def encode_queries(self, text):
  607. payload = {
  608. "model": self.model_name,
  609. "input": text,
  610. "encoding_format": "float",
  611. }
  612. response = requests.post(self.base_url, json=payload, headers=self.headers)
  613. try:
  614. res = response.json()
  615. return np.array(res["data"][0]["embedding"]), self.total_token_count(res)
  616. except Exception as _e:
  617. log_exception(_e, response)
  618. class ReplicateEmbed(Base):
  619. _FACTORY_NAME = "Replicate"
  620. def __init__(self, key, model_name, base_url=None):
  621. from replicate.client import Client
  622. self.model_name = model_name
  623. self.client = Client(api_token=key)
  624. def encode(self, texts: list):
  625. batch_size = 16
  626. token_count = sum([num_tokens_from_string(text) for text in texts])
  627. ress = []
  628. for i in range(0, len(texts), batch_size):
  629. res = self.client.run(self.model_name, input={"texts": texts[i : i + batch_size]})
  630. ress.extend(res)
  631. return np.array(ress), token_count
  632. def encode_queries(self, text):
  633. res = self.client.embed(self.model_name, input={"texts": [text]})
  634. return np.array(res), num_tokens_from_string(text)
  635. class BaiduYiyanEmbed(Base):
  636. _FACTORY_NAME = "BaiduYiyan"
  637. def __init__(self, key, model_name, base_url=None):
  638. import qianfan
  639. key = json.loads(key)
  640. ak = key.get("yiyan_ak", "")
  641. sk = key.get("yiyan_sk", "")
  642. self.client = qianfan.Embedding(ak=ak, sk=sk)
  643. self.model_name = model_name
  644. def encode(self, texts: list, batch_size=16):
  645. res = self.client.do(model=self.model_name, texts=texts).body
  646. try:
  647. return (
  648. np.array([r["embedding"] for r in res["data"]]),
  649. self.total_token_count(res),
  650. )
  651. except Exception as _e:
  652. log_exception(_e, res)
  653. def encode_queries(self, text):
  654. res = self.client.do(model=self.model_name, texts=[text]).body
  655. try:
  656. return (
  657. np.array([r["embedding"] for r in res["data"]]),
  658. self.total_token_count(res),
  659. )
  660. except Exception as _e:
  661. log_exception(_e, res)
  662. class VoyageEmbed(Base):
  663. _FACTORY_NAME = "Voyage AI"
  664. def __init__(self, key, model_name, base_url=None):
  665. import voyageai
  666. self.client = voyageai.Client(api_key=key)
  667. self.model_name = model_name
  668. def encode(self, texts: list):
  669. batch_size = 16
  670. ress = []
  671. token_count = 0
  672. for i in range(0, len(texts), batch_size):
  673. res = self.client.embed(texts=texts[i : i + batch_size], model=self.model_name, input_type="document")
  674. try:
  675. ress.extend(res.embeddings)
  676. token_count += res.total_tokens
  677. except Exception as _e:
  678. log_exception(_e, res)
  679. return np.array(ress), token_count
  680. def encode_queries(self, text):
  681. res = self.client.embed(texts=text, model=self.model_name, input_type="query")
  682. try:
  683. return np.array(res.embeddings)[0], res.total_tokens
  684. except Exception as _e:
  685. log_exception(_e, res)
  686. class HuggingFaceEmbed(Base):
  687. _FACTORY_NAME = "HuggingFace"
  688. def __init__(self, key, model_name, base_url=None):
  689. if not model_name:
  690. raise ValueError("Model name cannot be None")
  691. self.key = key
  692. self.model_name = model_name.split("___")[0]
  693. self.base_url = base_url or "http://127.0.0.1:8080"
  694. def encode(self, texts: list):
  695. embeddings = []
  696. for text in texts:
  697. response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
  698. if response.status_code == 200:
  699. embedding = response.json()
  700. embeddings.append(embedding[0])
  701. else:
  702. raise Exception(f"Error: {response.status_code} - {response.text}")
  703. return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
  704. def encode_queries(self, text):
  705. response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
  706. if response.status_code == 200:
  707. embedding = response.json()
  708. return np.array(embedding[0]), num_tokens_from_string(text)
  709. else:
  710. raise Exception(f"Error: {response.status_code} - {response.text}")
  711. class VolcEngineEmbed(OpenAIEmbed):
  712. _FACTORY_NAME = "VolcEngine"
  713. def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
  714. if not base_url:
  715. base_url = "https://ark.cn-beijing.volces.com/api/v3"
  716. ark_api_key = json.loads(key).get("ark_api_key", "")
  717. model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
  718. super().__init__(ark_api_key, model_name, base_url)
  719. class GPUStackEmbed(OpenAIEmbed):
  720. _FACTORY_NAME = "GPUStack"
  721. def __init__(self, key, model_name, base_url):
  722. if not base_url:
  723. raise ValueError("url cannot be None")
  724. base_url = urljoin(base_url, "v1")
  725. self.client = OpenAI(api_key=key, base_url=base_url)
  726. self.model_name = model_name
  727. class NovitaEmbed(SILICONFLOWEmbed):
  728. _FACTORY_NAME = "NovitaAI"
  729. def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai/embeddings"):
  730. if not base_url:
  731. base_url = "https://api.novita.ai/v3/openai/embeddings"
  732. super().__init__(key, model_name, base_url)
  733. class GiteeEmbed(SILICONFLOWEmbed):
  734. _FACTORY_NAME = "GiteeAI"
  735. def __init__(self, key, model_name, base_url="https://ai.gitee.com/v1/embeddings"):
  736. if not base_url:
  737. base_url = "https://ai.gitee.com/v1/embeddings"
  738. super().__init__(key, model_name, base_url)
  739. class DeepInfraEmbed(OpenAIEmbed):
  740. _FACTORY_NAME = "DeepInfra"
  741. def __init__(self, key, model_name, base_url="https://api.deepinfra.com/v1/openai"):
  742. if not base_url:
  743. base_url = "https://api.deepinfra.com/v1/openai"
  744. super().__init__(key, model_name, base_url)