| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - 
 - # from beartype import BeartypeConf
 - # from beartype.claw import beartype_all  # <-- you didn't sign up for this
 - # beartype_all(conf=BeartypeConf(violation_type=UserWarning))    # <-- emit warnings from all code
 - import random
 - import sys
 - from api.utils.log_utils import initRootLogger, get_project_base_directory
 - from graphrag.general.index import WithCommunity, WithResolution, Dealer
 - from graphrag.light.graph_extractor import GraphExtractor as LightKGExt
 - from graphrag.general.graph_extractor import GraphExtractor as GeneralKGExt
 - from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache
 - from rag.prompts import keyword_extraction, question_proposal, content_tagging
 - 
 - CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1]
 - CONSUMER_NAME = "task_executor_" + CONSUMER_NO
 - initRootLogger(CONSUMER_NAME)
 - 
 - import asyncio
 - import logging
 - import os
 - from datetime import datetime
 - import json
 - import xxhash
 - import copy
 - import re
 - import time
 - import threading
 - from functools import partial
 - from io import BytesIO
 - from multiprocessing.context import TimeoutError
 - from timeit import default_timer as timer
 - import tracemalloc
 - import signal
 - 
 - import numpy as np
 - from peewee import DoesNotExist
 - 
 - from api.db import LLMType, ParserType, TaskStatus
 - from api.db.services.document_service import DocumentService
 - from api.db.services.llm_service import LLMBundle
 - from api.db.services.task_service import TaskService
 - from api.db.services.file2document_service import File2DocumentService
 - from api import settings
 - from api.versions import get_ragflow_version
 - from api.db.db_models import close_connection
 - from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, \
 -     email, tag
 - from rag.nlp import search, rag_tokenizer
 - from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
 - from rag.settings import DOC_MAXIMUM_SIZE, SVR_QUEUE_NAME, print_rag_settings, TAG_FLD, PAGERANK_FLD
 - from rag.utils import num_tokens_from_string
 - from rag.utils.redis_conn import REDIS_CONN, Payload
 - from rag.utils.storage_factory import STORAGE_IMPL
 - 
 - BATCH_SIZE = 64
 - 
 - FACTORY = {
 -     "general": naive,
 -     ParserType.NAIVE.value: naive,
 -     ParserType.PAPER.value: paper,
 -     ParserType.BOOK.value: book,
 -     ParserType.PRESENTATION.value: presentation,
 -     ParserType.MANUAL.value: manual,
 -     ParserType.LAWS.value: laws,
 -     ParserType.QA.value: qa,
 -     ParserType.TABLE.value: table,
 -     ParserType.RESUME.value: resume,
 -     ParserType.PICTURE.value: picture,
 -     ParserType.ONE.value: one,
 -     ParserType.AUDIO.value: audio,
 -     ParserType.EMAIL.value: email,
 -     ParserType.KG.value: naive,
 -     ParserType.TAG.value: tag
 - }
 - 
 - CONSUMER_NAME = "task_consumer_" + CONSUMER_NO
 - PAYLOAD: Payload | None = None
 - BOOT_AT = datetime.now().astimezone().isoformat(timespec="milliseconds")
 - PENDING_TASKS = 0
 - LAG_TASKS = 0
 - 
 - mt_lock = threading.Lock()
 - DONE_TASKS = 0
 - FAILED_TASKS = 0
 - CURRENT_TASK = None
 - 
 - tracemalloc_started = False
 - 
 - # SIGUSR1 handler: start tracemalloc and take snapshot
 - def start_tracemalloc_and_snapshot(signum, frame):
 -     global tracemalloc_started
 -     if not tracemalloc_started:
 -         logging.info("got SIGUSR1, start tracemalloc")
 -         tracemalloc.start()
 -         tracemalloc_started = True
 -     else:
 -         logging.info("got SIGUSR1, tracemalloc is already running")
 - 
 -     timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
 -     snapshot_file = f"snapshot_{timestamp}.trace"
 -     snapshot_file = os.path.abspath(os.path.join(get_project_base_directory(), "logs", f"{os.getpid()}_snapshot_{timestamp}.trace"))
 - 
 -     snapshot = tracemalloc.take_snapshot()
 -     snapshot.dump(snapshot_file)
 -     logging.info(f"taken snapshot {snapshot_file}")
 - 
 - # SIGUSR2 handler: stop tracemalloc
 - def stop_tracemalloc(signum, frame):
 -     global tracemalloc_started
 -     if tracemalloc_started:
 -         logging.info("go SIGUSR2, stop tracemalloc")
 -         tracemalloc.stop()
 -         tracemalloc_started = False
 -     else:
 -         logging.info("got SIGUSR2, tracemalloc not running")
 - 
 - class TaskCanceledException(Exception):
 -     def __init__(self, msg):
 -         self.msg = msg
 - 
 - 
 - def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
 -     global PAYLOAD
 -     if prog is not None and prog < 0:
 -         msg = "[ERROR]" + msg
 -     try:
 -         cancel = TaskService.do_cancel(task_id)
 -     except DoesNotExist:
 -         logging.warning(f"set_progress task {task_id} is unknown")
 -         if PAYLOAD:
 -             PAYLOAD.ack()
 -             PAYLOAD = None
 -         return
 - 
 -     if cancel:
 -         msg += " [Canceled]"
 -         prog = -1
 - 
 -     if to_page > 0:
 -         if msg:
 -             if from_page < to_page:
 -                 msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
 -     if msg:
 -         msg = datetime.now().strftime("%H:%M:%S") + " " + msg
 -     d = {"progress_msg": msg}
 -     if prog is not None:
 -         d["progress"] = prog
 - 
 -     logging.info(f"set_progress({task_id}), progress: {prog}, progress_msg: {msg}")
 -     try:
 -         TaskService.update_progress(task_id, d)
 -     except DoesNotExist:
 -         logging.warning(f"set_progress task {task_id} is unknown")
 -         if PAYLOAD:
 -             PAYLOAD.ack()
 -             PAYLOAD = None
 -         return
 - 
 -     close_connection()
 -     if cancel and PAYLOAD:
 -         PAYLOAD.ack()
 -         PAYLOAD = None
 -         raise TaskCanceledException(msg)
 - 
 - 
 - def collect():
 -     global CONSUMER_NAME, PAYLOAD, DONE_TASKS, FAILED_TASKS
 -     try:
 -         PAYLOAD = REDIS_CONN.get_unacked_for(CONSUMER_NAME, SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
 -         if not PAYLOAD:
 -             PAYLOAD = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", CONSUMER_NAME)
 -         if not PAYLOAD:
 -             time.sleep(1)
 -             return None
 -     except Exception:
 -         logging.exception("Get task event from queue exception")
 -         return None
 - 
 -     msg = PAYLOAD.get_message()
 -     if not msg:
 -         return None
 - 
 -     task = None
 -     canceled = False
 -     try:
 -         task = TaskService.get_task(msg["id"])
 -         if task:
 -             _, doc = DocumentService.get_by_id(task["doc_id"])
 -             canceled = doc.run == TaskStatus.CANCEL.value or doc.progress < 0
 -     except DoesNotExist:
 -         pass
 -     except Exception:
 -         logging.exception("collect get_task exception")
 -     if not task or canceled:
 -         state = "is unknown" if not task else "has been cancelled"
 -         with mt_lock:
 -             DONE_TASKS += 1
 -         logging.info(f"collect task {msg['id']} {state}")
 -         return None
 - 
 -     task["task_type"] = msg.get("task_type", "")
 -     return task
 - 
 - 
 - def get_storage_binary(bucket, name):
 -     return STORAGE_IMPL.get(bucket, name)
 - 
 - 
 - def build_chunks(task, progress_callback):
 -     if task["size"] > DOC_MAXIMUM_SIZE:
 -         set_progress(task["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
 -                                               (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
 -         return []
 - 
 -     chunker = FACTORY[task["parser_id"].lower()]
 -     try:
 -         st = timer()
 -         bucket, name = File2DocumentService.get_storage_address(doc_id=task["doc_id"])
 -         binary = get_storage_binary(bucket, name)
 -         logging.info("From minio({}) {}/{}".format(timer() - st, task["location"], task["name"]))
 -     except TimeoutError:
 -         progress_callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.")
 -         logging.exception(
 -             "Minio {}/{} got timeout: Fetch file from minio timeout.".format(task["location"], task["name"]))
 -         raise
 -     except Exception as e:
 -         if re.search("(No such file|not found)", str(e)):
 -             progress_callback(-1, "Can not find file <%s> from minio. Could you try it again?" % task["name"])
 -         else:
 -             progress_callback(-1, "Get file from minio: %s" % str(e).replace("'", ""))
 -         logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"]))
 -         raise
 - 
 -     try:
 -         cks = chunker.chunk(task["name"], binary=binary, from_page=task["from_page"],
 -                             to_page=task["to_page"], lang=task["language"], callback=progress_callback,
 -                             kb_id=task["kb_id"], parser_config=task["parser_config"], tenant_id=task["tenant_id"])
 -         logging.info("Chunking({}) {}/{} done".format(timer() - st, task["location"], task["name"]))
 -     except TaskCanceledException:
 -         raise
 -     except Exception as e:
 -         progress_callback(-1, "Internal server error while chunking: %s" % str(e).replace("'", ""))
 -         logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"]))
 -         raise
 - 
 -     docs = []
 -     doc = {
 -         "doc_id": task["doc_id"],
 -         "kb_id": str(task["kb_id"])
 -     }
 -     if task["pagerank"]:
 -         doc[PAGERANK_FLD] = int(task["pagerank"])
 -     el = 0
 -     for ck in cks:
 -         d = copy.deepcopy(doc)
 -         d.update(ck)
 -         d["id"] = xxhash.xxh64((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8")).hexdigest()
 -         d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
 -         d["create_timestamp_flt"] = datetime.now().timestamp()
 -         if not d.get("image"):
 -             _ = d.pop("image", None)
 -             d["img_id"] = ""
 -             docs.append(d)
 -             continue
 - 
 -         try:
 -             output_buffer = BytesIO()
 -             if isinstance(d["image"], bytes):
 -                 output_buffer = BytesIO(d["image"])
 -             else:
 -                 d["image"].save(output_buffer, format='JPEG')
 - 
 -             st = timer()
 -             STORAGE_IMPL.put(task["kb_id"], d["id"], output_buffer.getvalue())
 -             el += timer() - st
 -         except Exception:
 -             logging.exception(
 -                 "Saving image of chunk {}/{}/{} got exception".format(task["location"], task["name"], d["id"]))
 -             raise
 - 
 -         d["img_id"] = "{}-{}".format(task["kb_id"], d["id"])
 -         del d["image"]
 -         docs.append(d)
 -     logging.info("MINIO PUT({}):{}".format(task["name"], el))
 - 
 -     if task["parser_config"].get("auto_keywords", 0):
 -         st = timer()
 -         progress_callback(msg="Start to generate keywords for every chunk ...")
 -         chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
 - 
 -         async def doc_keyword_extraction(chat_mdl, d, topn):
 -             cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "keywords", {"topn": topn})
 -             if not cached:
 -                 cached = await asyncio.to_thread(keyword_extraction, chat_mdl, d["content_with_weight"], topn)
 -                 set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "keywords", {"topn": topn})
 -             if cached:
 -                 d["important_kwd"] = cached.split(",")
 -                 d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
 -             return
 -         tasks = [doc_keyword_extraction(chat_mdl, d, task["parser_config"]["auto_keywords"]) for d in docs]
 -         asyncio.get_event_loop().run_until_complete(asyncio.gather(*tasks))
 -         progress_callback(msg="Keywords generation {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
 - 
 -     if task["parser_config"].get("auto_questions", 0):
 -         st = timer()
 -         progress_callback(msg="Start to generate questions for every chunk ...")
 -         chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
 - 
 -         async def doc_question_proposal(chat_mdl, d, topn):
 -             cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "question", {"topn": topn})
 -             if not cached:
 -                 cached = await asyncio.to_thread(question_proposal, chat_mdl, d["content_with_weight"], topn)
 -                 set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "question", {"topn": topn})
 -             if cached:
 -                 d["question_kwd"] = cached.split("\n")
 -                 d["question_tks"] = rag_tokenizer.tokenize("\n".join(d["question_kwd"]))
 -         tasks = [doc_question_proposal(chat_mdl, d, task["parser_config"]["auto_questions"]) for d in docs]
 -         asyncio.get_event_loop().run_until_complete(asyncio.gather(*tasks))
 -         progress_callback(msg="Question generation {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
 - 
 -     if task["kb_parser_config"].get("tag_kb_ids", []):
 -         progress_callback(msg="Start to tag for every chunk ...")
 -         kb_ids = task["kb_parser_config"]["tag_kb_ids"]
 -         tenant_id = task["tenant_id"]
 -         topn_tags = task["kb_parser_config"].get("topn_tags", 3)
 -         S = 1000
 -         st = timer()
 -         examples = []
 -         all_tags = get_tags_from_cache(kb_ids)
 -         if not all_tags:
 -             all_tags = settings.retrievaler.all_tags_in_portion(tenant_id, kb_ids, S)
 -             set_tags_to_cache(kb_ids, all_tags)
 -         else:
 -             all_tags = json.loads(all_tags)
 - 
 -         chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
 - 
 -         docs_to_tag = []
 -         for d in docs:
 -             if settings.retrievaler.tag_content(tenant_id, kb_ids, d, all_tags, topn_tags=topn_tags, S=S):
 -                 examples.append({"content": d["content_with_weight"], TAG_FLD: d[TAG_FLD]})
 -             else:
 -                 docs_to_tag.append(d)
 - 
 -         async def doc_content_tagging(chat_mdl, d, topn_tags):
 -             cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], all_tags, {"topn": topn_tags})
 -             if not cached:
 -                 picked_examples = random.choices(examples, k=2) if len(examples)>2 else examples
 -                 cached = await asyncio.to_thread(content_tagging, chat_mdl, d["content_with_weight"], all_tags, picked_examples, topn=topn_tags)
 -                 if cached:
 -                     cached = json.dumps(cached)
 -             if cached:
 -                 set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, all_tags, {"topn": topn_tags})
 -                 d[TAG_FLD] = json.loads(cached)
 -         tasks = [doc_content_tagging(chat_mdl, d, topn_tags) for d in docs_to_tag]
 -         asyncio.get_event_loop().run_until_complete(asyncio.gather(*tasks))
 -         progress_callback(msg="Tagging {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
 - 
 -     return docs
 - 
 - 
 - def init_kb(row, vector_size: int):
 -     idxnm = search.index_name(row["tenant_id"])
 -     return settings.docStoreConn.createIdx(idxnm, row.get("kb_id", ""), vector_size)
 - 
 - 
 - def embedding(docs, mdl, parser_config=None, callback=None):
 -     if parser_config is None:
 -         parser_config = {}
 -     batch_size = 16
 -     tts, cnts = [], []
 -     for d in docs:
 -         tts.append(d.get("docnm_kwd", "Title"))
 -         c = "\n".join(d.get("question_kwd", []))
 -         if not c:
 -             c = d["content_with_weight"]
 -         c = re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", c)
 -         if not c:
 -             c = "None"
 -         cnts.append(c)
 - 
 -     tk_count = 0
 -     if len(tts) == len(cnts):
 -         vts, c = mdl.encode(tts[0: 1])
 -         tts = np.concatenate([vts for _ in range(len(tts))], axis=0)
 -         tk_count += c
 - 
 -     cnts_ = np.array([])
 -     for i in range(0, len(cnts), batch_size):
 -         vts, c = mdl.encode(cnts[i: i + batch_size])
 -         if len(cnts_) == 0:
 -             cnts_ = vts
 -         else:
 -             cnts_ = np.concatenate((cnts_, vts), axis=0)
 -         tk_count += c
 -         callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
 -     cnts = cnts_
 - 
 -     title_w = float(parser_config.get("filename_embd_weight", 0.1))
 -     vects = (title_w * tts + (1 - title_w) *
 -              cnts) if len(tts) == len(cnts) else cnts
 - 
 -     assert len(vects) == len(docs)
 -     vector_size = 0
 -     for i, d in enumerate(docs):
 -         v = vects[i].tolist()
 -         vector_size = len(v)
 -         d["q_%d_vec" % len(v)] = v
 -     return tk_count, vector_size
 - 
 - 
 - def run_raptor(row, chat_mdl, embd_mdl, vector_size, callback=None):
 -     chunks = []
 -     vctr_nm = "q_%d_vec"%vector_size
 -     for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],
 -                                              fields=["content_with_weight", vctr_nm]):
 -         chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
 - 
 -     raptor = Raptor(
 -         row["parser_config"]["raptor"].get("max_cluster", 64),
 -         chat_mdl,
 -         embd_mdl,
 -         row["parser_config"]["raptor"]["prompt"],
 -         row["parser_config"]["raptor"]["max_token"],
 -         row["parser_config"]["raptor"]["threshold"]
 -     )
 -     original_length = len(chunks)
 -     chunks = raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
 -     doc = {
 -         "doc_id": row["doc_id"],
 -         "kb_id": [str(row["kb_id"])],
 -         "docnm_kwd": row["name"],
 -         "title_tks": rag_tokenizer.tokenize(row["name"])
 -     }
 -     if row["pagerank"]:
 -         doc[PAGERANK_FLD] = int(row["pagerank"])
 -     res = []
 -     tk_count = 0
 -     for content, vctr in chunks[original_length:]:
 -         d = copy.deepcopy(doc)
 -         d["id"] = xxhash.xxh64((content + str(d["doc_id"])).encode("utf-8")).hexdigest()
 -         d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
 -         d["create_timestamp_flt"] = datetime.now().timestamp()
 -         d[vctr_nm] = vctr.tolist()
 -         d["content_with_weight"] = content
 -         d["content_ltks"] = rag_tokenizer.tokenize(content)
 -         d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 -         res.append(d)
 -         tk_count += num_tokens_from_string(content)
 -     return res, tk_count
 - 
 - 
 - def run_graphrag(row, chat_model, language, embedding_model, callback=None):
 -     chunks = []
 -     for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],
 -                                              fields=["content_with_weight", "doc_id"]):
 -         chunks.append((d["doc_id"], d["content_with_weight"]))
 - 
 -     Dealer(LightKGExt if row["parser_config"]["graphrag"]["method"] != 'general' else GeneralKGExt,
 -                     row["tenant_id"],
 -                     str(row["kb_id"]),
 -                     chat_model,
 -                     chunks=chunks,
 -                     language=language,
 -                     entity_types=row["parser_config"]["graphrag"]["entity_types"],
 -                     embed_bdl=embedding_model,
 -                     callback=callback)
 - 
 - 
 - def do_handle_task(task):
 -     task_id = task["id"]
 -     task_from_page = task["from_page"]
 -     task_to_page = task["to_page"]
 -     task_tenant_id = task["tenant_id"]
 -     task_embedding_id = task["embd_id"]
 -     task_language = task["language"]
 -     task_llm_id = task["llm_id"]
 -     task_dataset_id = task["kb_id"]
 -     task_doc_id = task["doc_id"]
 -     task_document_name = task["name"]
 -     task_parser_config = task["parser_config"]
 - 
 -     # prepare the progress callback function
 -     progress_callback = partial(set_progress, task_id, task_from_page, task_to_page)
 - 
 -     # FIXME: workaround, Infinity doesn't support table parsing method, this check is to notify user
 -     lower_case_doc_engine = settings.DOC_ENGINE.lower()
 -     if lower_case_doc_engine == 'infinity' and task['parser_id'].lower() == 'table':
 -         error_message = "Table parsing method is not supported by Infinity, please use other parsing methods or use Elasticsearch as the document engine."
 -         progress_callback(-1, msg=error_message)
 -         raise Exception(error_message)
 - 
 -     try:
 -         task_canceled = TaskService.do_cancel(task_id)
 -     except DoesNotExist:
 -         logging.warning(f"task {task_id} is unknown")
 -         return
 -     if task_canceled:
 -         progress_callback(-1, msg="Task has been canceled.")
 -         return
 - 
 -     try:
 -         # bind embedding model
 -         embedding_model = LLMBundle(task_tenant_id, LLMType.EMBEDDING, llm_name=task_embedding_id, lang=task_language)
 -     except Exception as e:
 -         error_message = f'Fail to bind embedding model: {str(e)}'
 -         progress_callback(-1, msg=error_message)
 -         logging.exception(error_message)
 -         raise
 - 
 -     vts, _ = embedding_model.encode(["ok"])
 -     vector_size = len(vts[0])
 -     init_kb(task, vector_size)
 - 
 -     # Either using RAPTOR or Standard chunking methods
 -     if task.get("task_type", "") == "raptor":
 -         try:
 -             # bind LLM for raptor
 -             chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
 -             # run RAPTOR
 -             chunks, token_count = run_raptor(task, chat_model, embedding_model, vector_size, progress_callback)
 -         except TaskCanceledException:
 -             raise
 -         except Exception as e:
 -             error_message = f'Fail to bind LLM used by RAPTOR: {str(e)}'
 -             progress_callback(-1, msg=error_message)
 -             logging.exception(error_message)
 -             raise
 -     # Either using graphrag or Standard chunking methods
 -     elif task.get("task_type", "") == "graphrag":
 -         start_ts = timer()
 -         try:
 -             chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
 -             run_graphrag(task, chat_model, task_language, embedding_model, progress_callback)
 -             progress_callback(prog=1.0, msg="Knowledge Graph is done ({:.2f}s)".format(timer() - start_ts))
 -         except TaskCanceledException:
 -             raise
 -         except Exception as e:
 -             error_message = f'Fail to bind LLM used by Knowledge Graph: {str(e)}'
 -             progress_callback(-1, msg=error_message)
 -             logging.exception(error_message)
 -             raise
 -         return
 -     elif task.get("task_type", "") == "graph_resolution":
 -         start_ts = timer()
 -         try:
 -             chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
 -             WithResolution(
 -                 task["tenant_id"], str(task["kb_id"]),chat_model, embedding_model,
 -                 progress_callback
 -             )
 -             progress_callback(prog=1.0, msg="Knowledge Graph resolution is done ({:.2f}s)".format(timer() - start_ts))
 -         except TaskCanceledException:
 -             raise
 -         except Exception as e:
 -             error_message = f'Fail to bind LLM used by Knowledge Graph resolution: {str(e)}'
 -             progress_callback(-1, msg=error_message)
 -             logging.exception(error_message)
 -             raise
 -         return
 -     elif task.get("task_type", "") == "graph_community":
 -         start_ts = timer()
 -         try:
 -             chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
 -             WithCommunity(
 -                 task["tenant_id"], str(task["kb_id"]), chat_model, embedding_model,
 -                 progress_callback
 -             )
 -             progress_callback(prog=1.0, msg="GraphRAG community reports generation is done ({:.2f}s)".format(timer() - start_ts))
 -         except TaskCanceledException:
 -             raise
 -         except Exception as e:
 -             error_message = f'Fail to bind LLM used by GraphRAG community reports generation: {str(e)}'
 -             progress_callback(-1, msg=error_message)
 -             logging.exception(error_message)
 -             raise
 -         return
 -     else:
 -         # Standard chunking methods
 -         start_ts = timer()
 -         chunks = build_chunks(task, progress_callback)
 -         logging.info("Build document {}: {:.2f}s".format(task_document_name, timer() - start_ts))
 -         if chunks is None:
 -             return
 -         if not chunks:
 -             progress_callback(1., msg=f"No chunk built from {task_document_name}")
 -             return
 -         # TODO: exception handler
 -         ## set_progress(task["did"], -1, "ERROR: ")
 -         progress_callback(msg="Generate {} chunks".format(len(chunks)))
 -         start_ts = timer()
 -         try:
 -             token_count, vector_size = embedding(chunks, embedding_model, task_parser_config, progress_callback)
 -         except Exception as e:
 -             error_message = "Generate embedding error:{}".format(str(e))
 -             progress_callback(-1, error_message)
 -             logging.exception(error_message)
 -             token_count = 0
 -             raise
 -         progress_message = "Embedding chunks ({:.2f}s)".format(timer() - start_ts)
 -         logging.info(progress_message)
 -         progress_callback(msg=progress_message)
 - 
 -     chunk_count = len(set([chunk["id"] for chunk in chunks]))
 -     start_ts = timer()
 -     doc_store_result = ""
 -     es_bulk_size = 4
 -     for b in range(0, len(chunks), es_bulk_size):
 -         doc_store_result = settings.docStoreConn.insert(chunks[b:b + es_bulk_size], search.index_name(task_tenant_id),
 -                                                         task_dataset_id)
 -         if b % 128 == 0:
 -             progress_callback(prog=0.8 + 0.1 * (b + 1) / len(chunks), msg="")
 -         if doc_store_result:
 -             error_message = f"Insert chunk error: {doc_store_result}, please check log file and Elasticsearch/Infinity status!"
 -             progress_callback(-1, msg=error_message)
 -             raise Exception(error_message)
 -         chunk_ids = [chunk["id"] for chunk in chunks[:b + es_bulk_size]]
 -         chunk_ids_str = " ".join(chunk_ids)
 -         try:
 -             TaskService.update_chunk_ids(task["id"], chunk_ids_str)
 -         except DoesNotExist:
 -             logging.warning(f"do_handle_task update_chunk_ids failed since task {task['id']} is unknown.")
 -             doc_store_result = settings.docStoreConn.delete({"id": chunk_ids}, search.index_name(task_tenant_id),
 -                                                             task_dataset_id)
 -             return
 -     logging.info("Indexing doc({}), page({}-{}), chunks({}), elapsed: {:.2f}".format(task_document_name, task_from_page,
 -                                                                                      task_to_page, len(chunks),
 -                                                                                      timer() - start_ts))
 - 
 -     DocumentService.increment_chunk_num(task_doc_id, task_dataset_id, token_count, chunk_count, 0)
 - 
 -     time_cost = timer() - start_ts
 -     progress_callback(prog=1.0, msg="Done ({:.2f}s)".format(time_cost))
 -     logging.info(
 -         "Chunk doc({}), page({}-{}), chunks({}), token({}), elapsed:{:.2f}".format(task_document_name, task_from_page,
 -                                                                                    task_to_page, len(chunks),
 -                                                                                    token_count, time_cost))
 - 
 - 
 - def handle_task():
 -     global PAYLOAD, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK
 -     task = collect()
 -     if task:
 -         try:
 -             logging.info(f"handle_task begin for task {json.dumps(task)}")
 -             with mt_lock:
 -                 CURRENT_TASK = copy.deepcopy(task)
 -             do_handle_task(task)
 -             with mt_lock:
 -                 DONE_TASKS += 1
 -                 CURRENT_TASK = None
 -             logging.info(f"handle_task done for task {json.dumps(task)}")
 -         except TaskCanceledException:
 -             with mt_lock:
 -                 DONE_TASKS += 1
 -                 CURRENT_TASK = None
 -             try:
 -                 set_progress(task["id"], prog=-1, msg="handle_task got TaskCanceledException")
 -             except Exception:
 -                 pass
 -             logging.debug("handle_task got TaskCanceledException", exc_info=True)
 -         except Exception as e:
 -             with mt_lock:
 -                 FAILED_TASKS += 1
 -                 CURRENT_TASK = None
 -             try:
 -                 set_progress(task["id"], prog=-1, msg=f"[Exception]: {e}")
 -             except Exception:
 -                 pass
 -             logging.exception(f"handle_task got exception for task {json.dumps(task)}")
 -     if PAYLOAD:
 -         PAYLOAD.ack()
 -         PAYLOAD = None
 - 
 - 
 - def report_status():
 -     global CONSUMER_NAME, BOOT_AT, PENDING_TASKS, LAG_TASKS, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK
 -     REDIS_CONN.sadd("TASKEXE", CONSUMER_NAME)
 -     while True:
 -         try:
 -             now = datetime.now()
 -             group_info = REDIS_CONN.queue_info(SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
 -             if group_info is not None:
 -                 PENDING_TASKS = int(group_info.get("pending", 0))
 -                 LAG_TASKS = int(group_info.get("lag", 0))
 - 
 -             with mt_lock:
 -                 heartbeat = json.dumps({
 -                     "name": CONSUMER_NAME,
 -                     "now": now.astimezone().isoformat(timespec="milliseconds"),
 -                     "boot_at": BOOT_AT,
 -                     "pending": PENDING_TASKS,
 -                     "lag": LAG_TASKS,
 -                     "done": DONE_TASKS,
 -                     "failed": FAILED_TASKS,
 -                     "current": CURRENT_TASK,
 -                 })
 -             REDIS_CONN.zadd(CONSUMER_NAME, heartbeat, now.timestamp())
 -             logging.info(f"{CONSUMER_NAME} reported heartbeat: {heartbeat}")
 - 
 -             expired = REDIS_CONN.zcount(CONSUMER_NAME, 0, now.timestamp() - 60 * 30)
 -             if expired > 0:
 -                 REDIS_CONN.zpopmin(CONSUMER_NAME, expired)
 -         except Exception:
 -             logging.exception("report_status got exception")
 -         time.sleep(30)
 - 
 - 
 - def analyze_heap(snapshot1: tracemalloc.Snapshot, snapshot2: tracemalloc.Snapshot, snapshot_id: int, dump_full: bool):
 -     msg = ""
 -     if dump_full:
 -         stats2 = snapshot2.statistics('lineno')
 -         msg += f"{CONSUMER_NAME} memory usage of snapshot {snapshot_id}:\n"
 -         for stat in stats2[:10]:
 -             msg += f"{stat}\n"
 -     stats1_vs_2 = snapshot2.compare_to(snapshot1, 'lineno')
 -     msg += f"{CONSUMER_NAME} memory usage increase from snapshot {snapshot_id - 1} to snapshot {snapshot_id}:\n"
 -     for stat in stats1_vs_2[:10]:
 -         msg += f"{stat}\n"
 -     msg += f"{CONSUMER_NAME} detailed traceback for the top memory consumers:\n"
 -     for stat in stats1_vs_2[:3]:
 -         msg += '\n'.join(stat.traceback.format())
 -     logging.info(msg)
 - 
 - 
 - def main():
 -     logging.info(r"""
 -   ______           __      ______                     __            
 -  /_  __/___ ______/ /__   / ____/  _____  _______  __/ /_____  _____
 -   / / / __ `/ ___/ //_/  / __/ | |/_/ _ \/ ___/ / / / __/ __ \/ ___/
 -  / / / /_/ (__  ) ,<    / /____>  </  __/ /__/ /_/ / /_/ /_/ / /    
 - /_/  \__,_/____/_/|_|  /_____/_/|_|\___/\___/\__,_/\__/\____/_/                               
 -     """)
 -     logging.info(f'TaskExecutor: RAGFlow version: {get_ragflow_version()}')
 -     settings.init_settings()
 -     print_rag_settings()
 -     signal.signal(signal.SIGUSR1, start_tracemalloc_and_snapshot)
 -     signal.signal(signal.SIGUSR2, stop_tracemalloc)
 -     TRACE_MALLOC_ENABLED = int(os.environ.get('TRACE_MALLOC_ENABLED', "0"))
 -     if TRACE_MALLOC_ENABLED:
 -         start_tracemalloc_and_snapshot(None, None)
 - 
 -     background_thread = threading.Thread(target=report_status)
 -     background_thread.daemon = True
 -     background_thread.start()
 - 
 -     while True:
 -         handle_task()
 - 
 - if __name__ == "__main__":
 -     main()
 
 
  |