| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import logging
- import binascii
- import os
- import json
- import time
-
- import json_repair
- import re
- from collections import defaultdict
- from copy import deepcopy
- from timeit import default_timer as timer
- import datetime
- from datetime import timedelta
- from api.db import LLMType, ParserType, StatusEnum
- from api.db.db_models import Dialog, DB
- from api.db.services.common_service import CommonService
- from api.db.services.document_service import DocumentService
- from api.db.services.knowledgebase_service import KnowledgebaseService
- from api.db.services.llm_service import TenantLLMService, LLMBundle
- from api import settings
- from graphrag.utils import get_tags_from_cache, set_tags_to_cache
- from rag.app.resume import forbidden_select_fields4resume
- from rag.nlp import extract_between
- from rag.nlp.search import index_name
- from rag.settings import TAG_FLD
- from rag.utils import rmSpace, num_tokens_from_string, encoder
- from api.utils.file_utils import get_project_base_directory
- from rag.utils.tavily_conn import Tavily
-
-
- class DialogService(CommonService):
- model = Dialog
-
- @classmethod
- @DB.connection_context()
- def get_list(cls, tenant_id,
- page_number, items_per_page, orderby, desc, id, name):
- chats = cls.model.select()
- if id:
- chats = chats.where(cls.model.id == id)
- if name:
- chats = chats.where(cls.model.name == name)
- chats = chats.where(
- (cls.model.tenant_id == tenant_id)
- & (cls.model.status == StatusEnum.VALID.value)
- )
- if desc:
- chats = chats.order_by(cls.model.getter_by(orderby).desc())
- else:
- chats = chats.order_by(cls.model.getter_by(orderby).asc())
-
- chats = chats.paginate(page_number, items_per_page)
-
- return list(chats.dicts())
-
-
- def message_fit_in(msg, max_length=4000):
- def count():
- nonlocal msg
- tks_cnts = []
- for m in msg:
- tks_cnts.append(
- {"role": m["role"], "count": num_tokens_from_string(m["content"])})
- total = 0
- for m in tks_cnts:
- total += m["count"]
- return total
-
- c = count()
- if c < max_length:
- return c, msg
-
- msg_ = [m for m in msg[:-1] if m["role"] == "system"]
- if len(msg) > 1:
- msg_.append(msg[-1])
- msg = msg_
- c = count()
- if c < max_length:
- return c, msg
-
- ll = num_tokens_from_string(msg_[0]["content"])
- ll2 = num_tokens_from_string(msg_[-1]["content"])
- if ll / (ll + ll2) > 0.8:
- m = msg_[0]["content"]
- m = encoder.decode(encoder.encode(m)[:max_length - ll2])
- msg[0]["content"] = m
- return max_length, msg
-
- m = msg_[1]["content"]
- m = encoder.decode(encoder.encode(m)[:max_length - ll2])
- msg[1]["content"] = m
- return max_length, msg
-
-
- def llm_id2llm_type(llm_id):
- llm_id, _ = TenantLLMService.split_model_name_and_factory(llm_id)
- fnm = os.path.join(get_project_base_directory(), "conf")
- llm_factories = json.load(open(os.path.join(fnm, "llm_factories.json"), "r"))
- for llm_factory in llm_factories["factory_llm_infos"]:
- for llm in llm_factory["llm"]:
- if llm_id == llm["llm_name"]:
- return llm["model_type"].strip(",")[-1]
-
-
- def kb_prompt(kbinfos, max_tokens):
- knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
- used_token_count = 0
- chunks_num = 0
- for i, c in enumerate(knowledges):
- used_token_count += num_tokens_from_string(c)
- chunks_num += 1
- if max_tokens * 0.97 < used_token_count:
- knowledges = knowledges[:i]
- logging.warning(f"Not all the retrieval into prompt: {i+1}/{len(knowledges)}")
- break
-
- docs = DocumentService.get_by_ids([ck["doc_id"] for ck in kbinfos["chunks"][:chunks_num]])
- docs = {d.id: d.meta_fields for d in docs}
-
- doc2chunks = defaultdict(lambda: {"chunks": [], "meta": []})
- for ck in kbinfos["chunks"][:chunks_num]:
- doc2chunks[ck["docnm_kwd"]]["chunks"].append((f"URL: {ck['url']}\n" if "url" in ck else "") + ck["content_with_weight"])
- doc2chunks[ck["docnm_kwd"]]["meta"] = docs.get(ck["doc_id"], {})
-
- knowledges = []
- for nm, cks_meta in doc2chunks.items():
- txt = f"Document: {nm} \n"
- for k, v in cks_meta["meta"].items():
- txt += f"{k}: {v}\n"
- txt += "Relevant fragments as following:\n"
- for i, chunk in enumerate(cks_meta["chunks"], 1):
- txt += f"{i}. {chunk}\n"
- knowledges.append(txt)
- return knowledges
-
-
- def label_question(question, kbs):
- tags = None
- tag_kb_ids = []
- for kb in kbs:
- if kb.parser_config.get("tag_kb_ids"):
- tag_kb_ids.extend(kb.parser_config["tag_kb_ids"])
- if tag_kb_ids:
- all_tags = get_tags_from_cache(tag_kb_ids)
- if not all_tags:
- all_tags = settings.retrievaler.all_tags_in_portion(kb.tenant_id, tag_kb_ids)
- set_tags_to_cache(all_tags, tag_kb_ids)
- else:
- all_tags = json.loads(all_tags)
- tag_kbs = KnowledgebaseService.get_by_ids(tag_kb_ids)
- tags = settings.retrievaler.tag_query(question,
- list(set([kb.tenant_id for kb in tag_kbs])),
- tag_kb_ids,
- all_tags,
- kb.parser_config.get("topn_tags", 3)
- )
- return tags
-
-
- def chat_solo(dialog, messages, stream=True):
- if llm_id2llm_type(dialog.llm_id) == "image2text":
- chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
- else:
- chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
-
- prompt_config = dialog.prompt_config
- tts_mdl = None
- if prompt_config.get("tts"):
- tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
- msg = [{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
- for m in messages if m["role"] != "system"]
- if stream:
- last_ans = ""
- for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting):
- answer = ans
- delta_ans = ans[len(last_ans):]
- if num_tokens_from_string(delta_ans) < 16:
- continue
- last_ans = answer
- yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt":"", "created_at": time.time()}
- else:
- answer = chat_mdl.chat(prompt_config.get("system", ""), msg, dialog.llm_setting)
- user_content = msg[-1].get("content", "[content not available]")
- logging.debug("User: {}|Assistant: {}".format(user_content, answer))
- yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, answer), "prompt": "", "created_at": time.time()}
-
-
- def chat(dialog, messages, stream=True, **kwargs):
- assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
- if not dialog.kb_ids:
- for ans in chat_solo(dialog, messages, stream):
- yield ans
- return
-
- chat_start_ts = timer()
-
- if llm_id2llm_type(dialog.llm_id) == "image2text":
- llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
- else:
- llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
-
- max_tokens = llm_model_config.get("max_tokens", 8192)
-
- check_llm_ts = timer()
-
- kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
- embedding_list = list(set([kb.embd_id for kb in kbs]))
- if len(embedding_list) != 1:
- yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
- return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
-
- embedding_model_name = embedding_list[0]
-
- retriever = settings.retrievaler
-
- questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
- attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
- if "doc_ids" in messages[-1]:
- attachments = messages[-1]["doc_ids"]
-
- create_retriever_ts = timer()
-
- embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embedding_model_name)
- if not embd_mdl:
- raise LookupError("Embedding model(%s) not found" % embedding_model_name)
-
- bind_embedding_ts = timer()
-
- if llm_id2llm_type(dialog.llm_id) == "image2text":
- chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
- else:
- chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
-
- bind_llm_ts = timer()
-
- prompt_config = dialog.prompt_config
- field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
- tts_mdl = None
- if prompt_config.get("tts"):
- tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
- # try to use sql if field mapping is good to go
- if field_map:
- logging.debug("Use SQL to retrieval:{}".format(questions[-1]))
- ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
- if ans:
- yield ans
- return
-
- for p in prompt_config["parameters"]:
- if p["key"] == "knowledge":
- continue
- if p["key"] not in kwargs and not p["optional"]:
- raise KeyError("Miss parameter: " + p["key"])
- if p["key"] not in kwargs:
- prompt_config["system"] = prompt_config["system"].replace(
- "{%s}" % p["key"], " ")
-
- if len(questions) > 1 and prompt_config.get("refine_multiturn"):
- questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)]
- else:
- questions = questions[-1:]
-
- refine_question_ts = timer()
-
- rerank_mdl = None
- if dialog.rerank_id:
- rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)
-
- bind_reranker_ts = timer()
- generate_keyword_ts = bind_reranker_ts
- thought = ""
- kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
-
- if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
- knowledges = []
- else:
- if prompt_config.get("keyword", False):
- questions[-1] += keyword_extraction(chat_mdl, questions[-1])
- generate_keyword_ts = timer()
-
- tenant_ids = list(set([kb.tenant_id for kb in kbs]))
-
- knowledges = []
- if prompt_config.get("reasoning", False):
- for think in reasoning(kbinfos, " ".join(questions), chat_mdl, embd_mdl, tenant_ids, dialog.kb_ids, prompt_config, MAX_SEARCH_LIMIT=3):
- if isinstance(think, str):
- thought = think
- knowledges = [t for t in think.split("\n") if t]
- else:
- yield think
- else:
- kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
- dialog.similarity_threshold,
- dialog.vector_similarity_weight,
- doc_ids=attachments,
- top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl,
- rank_feature=label_question(" ".join(questions), kbs)
- )
- if prompt_config.get("tavily_api_key"):
- tav = Tavily(prompt_config["tavily_api_key"])
- tav_res = tav.retrieve_chunks(" ".join(questions))
- kbinfos["chunks"].extend(tav_res["chunks"])
- kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
- if prompt_config.get("use_kg"):
- ck = settings.kg_retrievaler.retrieval(" ".join(questions),
- tenant_ids,
- dialog.kb_ids,
- embd_mdl,
- LLMBundle(dialog.tenant_id, LLMType.CHAT))
- if ck["content_with_weight"]:
- kbinfos["chunks"].insert(0, ck)
-
- knowledges = kb_prompt(kbinfos, max_tokens)
-
- logging.debug(
- "{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
-
- retrieval_ts = timer()
- if not knowledges and prompt_config.get("empty_response"):
- empty_res = prompt_config["empty_response"]
- yield {"answer": empty_res, "reference": kbinfos, "audio_binary": tts(tts_mdl, empty_res)}
- return {"answer": prompt_config["empty_response"], "reference": kbinfos}
-
- kwargs["knowledge"] = "\n------\n" + "\n\n------\n\n".join(knowledges)
- gen_conf = dialog.llm_setting
-
- msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
- msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
- for m in messages if m["role"] != "system"])
- used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97))
- assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
- prompt = msg[0]["content"]
- prompt += "\n\n### Query:\n%s" % " ".join(questions)
-
- if "max_tokens" in gen_conf:
- gen_conf["max_tokens"] = min(
- gen_conf["max_tokens"],
- max_tokens - used_token_count)
-
- def decorate_answer(answer):
- nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts
-
- refs = []
- ans = answer.split("</think>")
- think = ""
- if len(ans) == 2:
- think = ans[0] + "</think>"
- answer = ans[1]
- if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
- answer, idx = retriever.insert_citations(answer,
- [ck["content_ltks"]
- for ck in kbinfos["chunks"]],
- [ck["vector"]
- for ck in kbinfos["chunks"]],
- embd_mdl,
- tkweight=1 - dialog.vector_similarity_weight,
- vtweight=dialog.vector_similarity_weight)
- idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
- recall_docs = [
- d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
- if not recall_docs:
- recall_docs = kbinfos["doc_aggs"]
- kbinfos["doc_aggs"] = recall_docs
-
- refs = deepcopy(kbinfos)
- for c in refs["chunks"]:
- if c.get("vector"):
- del c["vector"]
-
- if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
- answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
- finish_chat_ts = timer()
-
- total_time_cost = (finish_chat_ts - chat_start_ts) * 1000
- check_llm_time_cost = (check_llm_ts - chat_start_ts) * 1000
- create_retriever_time_cost = (create_retriever_ts - check_llm_ts) * 1000
- bind_embedding_time_cost = (bind_embedding_ts - create_retriever_ts) * 1000
- bind_llm_time_cost = (bind_llm_ts - bind_embedding_ts) * 1000
- refine_question_time_cost = (refine_question_ts - bind_llm_ts) * 1000
- bind_reranker_time_cost = (bind_reranker_ts - refine_question_ts) * 1000
- generate_keyword_time_cost = (generate_keyword_ts - bind_reranker_ts) * 1000
- retrieval_time_cost = (retrieval_ts - generate_keyword_ts) * 1000
- generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000
-
- prompt = f"{prompt}\n\n - Total: {total_time_cost:.1f}ms\n - Check LLM: {check_llm_time_cost:.1f}ms\n - Create retriever: {create_retriever_time_cost:.1f}ms\n - Bind embedding: {bind_embedding_time_cost:.1f}ms\n - Bind LLM: {bind_llm_time_cost:.1f}ms\n - Tune question: {refine_question_time_cost:.1f}ms\n - Bind reranker: {bind_reranker_time_cost:.1f}ms\n - Generate keyword: {generate_keyword_time_cost:.1f}ms\n - Retrieval: {retrieval_time_cost:.1f}ms\n - Generate answer: {generate_result_time_cost:.1f}ms"
- return {"answer": think+answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt), "created_at": time.time()}
-
- if stream:
- last_ans = ""
- answer = ""
- for ans in chat_mdl.chat_streamly(prompt, msg[1:], gen_conf):
- if thought:
- ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
- answer = ans
- delta_ans = ans[len(last_ans):]
- if num_tokens_from_string(delta_ans) < 16:
- continue
- last_ans = answer
- yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
- delta_ans = answer[len(last_ans):]
- if delta_ans:
- yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
- yield decorate_answer(thought+answer)
- else:
- answer = chat_mdl.chat(prompt, msg[1:], gen_conf)
- user_content = msg[-1].get("content", "[content not available]")
- logging.debug("User: {}|Assistant: {}".format(user_content, answer))
- res = decorate_answer(answer)
- res["audio_binary"] = tts(tts_mdl, answer)
- yield res
-
-
- def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
- sys_prompt = "You are a Database Administrator. You need to check the fields of the following tables based on the user's list of questions and write the SQL corresponding to the last question."
- user_prompt = """
- Table name: {};
- Table of database fields are as follows:
- {}
-
- Question are as follows:
- {}
- Please write the SQL, only SQL, without any other explanations or text.
- """.format(
- index_name(tenant_id),
- "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
- question
- )
- tried_times = 0
-
- def get_table():
- nonlocal sys_prompt, user_prompt, question, tried_times
- sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {
- "temperature": 0.06})
- logging.debug(f"{question} ==> {user_prompt} get SQL: {sql}")
- sql = re.sub(r"[\r\n]+", " ", sql.lower())
- sql = re.sub(r".*select ", "select ", sql.lower())
- sql = re.sub(r" +", " ", sql)
- sql = re.sub(r"([;;]|```).*", "", sql)
- if sql[:len("select ")] != "select ":
- return None, None
- if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
- if sql[:len("select *")] != "select *":
- sql = "select doc_id,docnm_kwd," + sql[6:]
- else:
- flds = []
- for k in field_map.keys():
- if k in forbidden_select_fields4resume:
- continue
- if len(flds) > 11:
- break
- flds.append(k)
- sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
-
- logging.debug(f"{question} get SQL(refined): {sql}")
- tried_times += 1
- return settings.retrievaler.sql_retrieval(sql, format="json"), sql
-
- tbl, sql = get_table()
- if tbl is None:
- return None
- if tbl.get("error") and tried_times <= 2:
- user_prompt = """
- Table name: {};
- Table of database fields are as follows:
- {}
-
- Question are as follows:
- {}
- Please write the SQL, only SQL, without any other explanations or text.
-
-
- The SQL error you provided last time is as follows:
- {}
-
- Error issued by database as follows:
- {}
-
- Please correct the error and write SQL again, only SQL, without any other explanations or text.
- """.format(
- index_name(tenant_id),
- "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
- question, sql, tbl["error"]
- )
- tbl, sql = get_table()
- logging.debug("TRY it again: {}".format(sql))
-
- logging.debug("GET table: {}".format(tbl))
- if tbl.get("error") or len(tbl["rows"]) == 0:
- return None
-
- docid_idx = set([ii for ii, c in enumerate(
- tbl["columns"]) if c["name"] == "doc_id"])
- doc_name_idx = set([ii for ii, c in enumerate(
- tbl["columns"]) if c["name"] == "docnm_kwd"])
- column_idx = [ii for ii in range(
- len(tbl["columns"])) if ii not in (docid_idx | doc_name_idx)]
-
- # compose Markdown table
- columns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"],
- tbl["columns"][i]["name"])) for i in
- column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
-
- line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + \
- ("|------|" if docid_idx and docid_idx else "")
-
- rows = ["|" +
- "|".join([rmSpace(str(r[i])) for i in column_idx]).replace("None", " ") +
- "|" for r in tbl["rows"]]
- rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
- if quota:
- rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
- else:
- rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
- rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
-
- if not docid_idx or not doc_name_idx:
- logging.warning("SQL missing field: " + sql)
- return {
- "answer": "\n".join([columns, line, rows]),
- "reference": {"chunks": [], "doc_aggs": []},
- "prompt": sys_prompt
- }
-
- docid_idx = list(docid_idx)[0]
- doc_name_idx = list(doc_name_idx)[0]
- doc_aggs = {}
- for r in tbl["rows"]:
- if r[docid_idx] not in doc_aggs:
- doc_aggs[r[docid_idx]] = {"doc_name": r[doc_name_idx], "count": 0}
- doc_aggs[r[docid_idx]]["count"] += 1
- return {
- "answer": "\n".join([columns, line, rows]),
- "reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[doc_name_idx]} for r in tbl["rows"]],
- "doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
- doc_aggs.items()]},
- "prompt": sys_prompt
- }
-
-
- def relevant(tenant_id, llm_id, question, contents: list):
- if llm_id2llm_type(llm_id) == "image2text":
- chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
- else:
- chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
- prompt = """
- You are a grader assessing relevance of a retrieved document to a user question.
- It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
- If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
- Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
- No other words needed except 'yes' or 'no'.
- """
- if not contents:
- return False
- contents = "Documents: \n" + " - ".join(contents)
- contents = f"Question: {question}\n" + contents
- if num_tokens_from_string(contents) >= chat_mdl.max_length - 4:
- contents = encoder.decode(encoder.encode(contents)[:chat_mdl.max_length - 4])
- ans = chat_mdl.chat(prompt, [{"role": "user", "content": contents}], {"temperature": 0.01})
- if ans.lower().find("yes") >= 0:
- return True
- return False
-
-
- def rewrite(tenant_id, llm_id, question):
- if llm_id2llm_type(llm_id) == "image2text":
- chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
- else:
- chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
- prompt = """
- You are an expert at query expansion to generate a paraphrasing of a question.
- I can't retrieval relevant information from the knowledge base by using user's question directly.
- You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase,
- writing the abbreviation in its entirety, adding some extra descriptions or explanations,
- changing the way of expression, translating the original question into another language (English/Chinese), etc.
- And return 5 versions of question and one is from translation.
- Just list the question. No other words are needed.
- """
- ans = chat_mdl.chat(prompt, [{"role": "user", "content": question}], {"temperature": 0.8})
- return ans
-
-
- def keyword_extraction(chat_mdl, content, topn=3):
- prompt = f"""
- Role: You're a text analyzer.
- Task: extract the most important keywords/phrases of a given piece of text content.
- Requirements:
- - Summarize the text content, and give top {topn} important keywords/phrases.
- - The keywords MUST be in language of the given piece of text content.
- - The keywords are delimited by ENGLISH COMMA.
- - Keywords ONLY in output.
-
- ### Text Content
- {content}
-
- """
- msg = [
- {"role": "system", "content": prompt},
- {"role": "user", "content": "Output: "}
- ]
- _, msg = message_fit_in(msg, chat_mdl.max_length)
- kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
- if isinstance(kwd, tuple):
- kwd = kwd[0]
- kwd = re.sub(r"<think>.*</think>", "", kwd, flags=re.DOTALL)
- if kwd.find("**ERROR**") >= 0:
- return ""
- return kwd
-
-
- def question_proposal(chat_mdl, content, topn=3):
- prompt = f"""
- Role: You're a text analyzer.
- Task: propose {topn} questions about a given piece of text content.
- Requirements:
- - Understand and summarize the text content, and propose top {topn} important questions.
- - The questions SHOULD NOT have overlapping meanings.
- - The questions SHOULD cover the main content of the text as much as possible.
- - The questions MUST be in language of the given piece of text content.
- - One question per line.
- - Question ONLY in output.
-
- ### Text Content
- {content}
-
- """
- msg = [
- {"role": "system", "content": prompt},
- {"role": "user", "content": "Output: "}
- ]
- _, msg = message_fit_in(msg, chat_mdl.max_length)
- kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
- if isinstance(kwd, tuple):
- kwd = kwd[0]
- kwd = re.sub(r"<think>.*</think>", "", kwd, flags=re.DOTALL)
- if kwd.find("**ERROR**") >= 0:
- return ""
- return kwd
-
-
- def full_question(tenant_id, llm_id, messages):
- if llm_id2llm_type(llm_id) == "image2text":
- chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
- else:
- chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
- conv = []
- for m in messages:
- if m["role"] not in ["user", "assistant"]:
- continue
- conv.append("{}: {}".format(m["role"].upper(), m["content"]))
- conv = "\n".join(conv)
- today = datetime.date.today().isoformat()
- yesterday = (datetime.date.today() - timedelta(days=1)).isoformat()
- tomorrow = (datetime.date.today() + timedelta(days=1)).isoformat()
- prompt = f"""
- Role: A helpful assistant
-
- Task and steps:
- 1. Generate a full user question that would follow the conversation.
- 2. If the user's question involves relative date, you need to convert it into absolute date based on the current date, which is {today}. For example: 'yesterday' would be converted to {yesterday}.
-
- Requirements & Restrictions:
- - Text generated MUST be in the same language of the original user's question.
- - If the user's latest question is completely, don't do anything, just return the original question.
- - DON'T generate anything except a refined question.
-
- ######################
- -Examples-
- ######################
-
- # Example 1
- ## Conversation
- USER: What is the name of Donald Trump's father?
- ASSISTANT: Fred Trump.
- USER: And his mother?
- ###############
- Output: What's the name of Donald Trump's mother?
-
- ------------
- # Example 2
- ## Conversation
- USER: What is the name of Donald Trump's father?
- ASSISTANT: Fred Trump.
- USER: And his mother?
- ASSISTANT: Mary Trump.
- User: What's her full name?
- ###############
- Output: What's the full name of Donald Trump's mother Mary Trump?
-
- ------------
- # Example 3
- ## Conversation
- USER: What's the weather today in London?
- ASSISTANT: Cloudy.
- USER: What's about tomorrow in Rochester?
- ###############
- Output: What's the weather in Rochester on {tomorrow}?
- ######################
-
- # Real Data
- ## Conversation
- {conv}
- ###############
- """
- ans = chat_mdl.chat(prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.2})
- ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
- return ans if ans.find("**ERROR**") < 0 else messages[-1]["content"]
-
-
- def tts(tts_mdl, text):
- if not tts_mdl or not text:
- return
- bin = b""
- for chunk in tts_mdl.tts(text):
- bin += chunk
- return binascii.hexlify(bin).decode("utf-8")
-
-
- def ask(question, kb_ids, tenant_id):
- kbs = KnowledgebaseService.get_by_ids(kb_ids)
- embedding_list = list(set([kb.embd_id for kb in kbs]))
-
- is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
- retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
-
- embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
- chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
- max_tokens = chat_mdl.max_length
- tenant_ids = list(set([kb.tenant_id for kb in kbs]))
- kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids,
- 1, 12, 0.1, 0.3, aggs=False,
- rank_feature=label_question(question, kbs)
- )
- knowledges = kb_prompt(kbinfos, max_tokens)
- prompt = """
- Role: You're a smart assistant. Your name is Miss R.
- Task: Summarize the information from knowledge bases and answer user's question.
- Requirements and restriction:
- - DO NOT make things up, especially for numbers.
- - If the information from knowledge is irrelevant with user's question, JUST SAY: Sorry, no relevant information provided.
- - Answer with markdown format text.
- - Answer in language of user's question.
- - DO NOT make things up, especially for numbers.
-
- ### Information from knowledge bases
- %s
-
- The above is information from knowledge bases.
-
- """ % "\n".join(knowledges)
- msg = [{"role": "user", "content": question}]
-
- def decorate_answer(answer):
- nonlocal knowledges, kbinfos, prompt
- answer, idx = retriever.insert_citations(answer,
- [ck["content_ltks"]
- for ck in kbinfos["chunks"]],
- [ck["vector"]
- for ck in kbinfos["chunks"]],
- embd_mdl,
- tkweight=0.7,
- vtweight=0.3)
- idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
- recall_docs = [
- d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
- if not recall_docs:
- recall_docs = kbinfos["doc_aggs"]
- kbinfos["doc_aggs"] = recall_docs
- refs = deepcopy(kbinfos)
- for c in refs["chunks"]:
- if c.get("vector"):
- del c["vector"]
-
- if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
- answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
- return {"answer": answer, "reference": refs}
-
- answer = ""
- for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}):
- answer = ans
- yield {"answer": answer, "reference": {}}
- yield decorate_answer(answer)
-
-
- def content_tagging(chat_mdl, content, all_tags, examples, topn=3):
- prompt = f"""
- Role: You're a text analyzer.
-
- Task: Tag (put on some labels) to a given piece of text content based on the examples and the entire tag set.
-
- Steps::
- - Comprehend the tag/label set.
- - Comprehend examples which all consist of both text content and assigned tags with relevance score in format of JSON.
- - Summarize the text content, and tag it with top {topn} most relevant tags from the set of tag/label and the corresponding relevance score.
-
- Requirements
- - The tags MUST be from the tag set.
- - The output MUST be in JSON format only, the key is tag and the value is its relevance score.
- - The relevance score must be range from 1 to 10.
- - Keywords ONLY in output.
-
- # TAG SET
- {", ".join(all_tags)}
-
- """
- for i, ex in enumerate(examples):
- prompt += """
- # Examples {}
- ### Text Content
- {}
-
- Output:
- {}
-
- """.format(i, ex["content"], json.dumps(ex[TAG_FLD], indent=2, ensure_ascii=False))
-
- prompt += f"""
- # Real Data
- ### Text Content
- {content}
-
- """
- msg = [
- {"role": "system", "content": prompt},
- {"role": "user", "content": "Output: "}
- ]
- _, msg = message_fit_in(msg, chat_mdl.max_length)
- kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.5})
- if isinstance(kwd, tuple):
- kwd = kwd[0]
- kwd = re.sub(r"<think>.*</think>", "", kwd, flags=re.DOTALL)
- if kwd.find("**ERROR**") >= 0:
- raise Exception(kwd)
-
- try:
- return json_repair.loads(kwd)
- except json_repair.JSONDecodeError:
- try:
- result = kwd.replace(prompt[:-1], '').replace('user', '').replace('model', '').strip()
- result = '{' + result.split('{')[1].split('}')[0] + '}'
- return json_repair.loads(result)
- except Exception as e:
- logging.exception(f"JSON parsing error: {result} -> {e}")
- raise e
-
-
- def reasoning(chunk_info: dict, question: str, chat_mdl: LLMBundle, embd_mdl: LLMBundle,
- tenant_ids: list[str], kb_ids: list[str], prompt_config, MAX_SEARCH_LIMIT: int = 6,
- top_n: int = 5, similarity_threshold: float = 0.4, vector_similarity_weight: float = 0.3):
- BEGIN_SEARCH_QUERY = "<|begin_search_query|>"
- END_SEARCH_QUERY = "<|end_search_query|>"
- BEGIN_SEARCH_RESULT = "<|begin_search_result|>"
- END_SEARCH_RESULT = "<|end_search_result|>"
-
- def rm_query_tags(line):
- pattern = re.escape(BEGIN_SEARCH_QUERY) + r"(.*?)" + re.escape(END_SEARCH_QUERY)
- return re.sub(pattern, "", line)
-
- def rm_result_tags(line):
- pattern = re.escape(BEGIN_SEARCH_RESULT) + r"(.*?)" + re.escape(END_SEARCH_RESULT)
- return re.sub(pattern, "", line)
-
- reason_prompt = (
- "You are a reasoning assistant with the ability to perform dataset searches to help "
- "you answer the user's question accurately. You have special tools:\n\n"
- f"- To perform a search: write {BEGIN_SEARCH_QUERY} your query here {END_SEARCH_QUERY}.\n"
- f"Then, the system will search and analyze relevant content, then provide you with helpful information in the format {BEGIN_SEARCH_RESULT} ...search results... {END_SEARCH_RESULT}.\n\n"
- f"You can repeat the search process multiple times if necessary. The maximum number of search attempts is limited to {MAX_SEARCH_LIMIT}.\n\n"
- "Once you have all the information you need, continue your reasoning.\n\n"
- "-- Example 1 --\n" ########################################
- "Question: \"Are both the directors of Jaws and Casino Royale from the same country?\"\n"
- "Assistant:\n"
- f" {BEGIN_SEARCH_QUERY}Who is the director of Jaws?{END_SEARCH_QUERY}\n\n"
- "User:\n"
- f" {BEGIN_SEARCH_RESULT}\nThe director of Jaws is Steven Spielberg...\n{END_SEARCH_RESULT}\n\n"
- "Continues reasoning with the new information.\n"
- "Assistant:\n"
- f" {BEGIN_SEARCH_QUERY}Where is Steven Spielberg from?{END_SEARCH_QUERY}\n\n"
- "User:\n"
- f" {BEGIN_SEARCH_RESULT}\nSteven Allan Spielberg is an American filmmaker...\n{END_SEARCH_RESULT}\n\n"
- "Continues reasoning with the new information...\n\n"
- "Assistant:\n"
- f" {BEGIN_SEARCH_QUERY}Who is the director of Casino Royale?{END_SEARCH_QUERY}\n\n"
- "User:\n"
- f" {BEGIN_SEARCH_RESULT}\nCasino Royale is a 2006 spy film directed by Martin Campbell...\n{END_SEARCH_RESULT}\n\n"
- "Continues reasoning with the new information...\n\n"
- "Assistant:\n"
- f" {BEGIN_SEARCH_QUERY}Where is Martin Campbell from?{END_SEARCH_QUERY}\n\n"
- "User:\n"
- f" {BEGIN_SEARCH_RESULT}\nMartin Campbell (born 24 October 1943) is a New Zealand film and television director...\n{END_SEARCH_RESULT}\n\n"
- "Continues reasoning with the new information...\n\n"
- "Assistant:\nIt's enough to answer the question\n"
-
- "-- Example 2 --\n" #########################################
- "Question: \"When was the founder of craigslist born?\"\n"
- "Assistant:\n"
- f" {BEGIN_SEARCH_QUERY}Who was the founder of craigslist?{END_SEARCH_QUERY}\n\n"
- "User:\n"
- f" {BEGIN_SEARCH_RESULT}\nCraigslist was founded by Craig Newmark...\n{END_SEARCH_RESULT}\n\n"
- "Continues reasoning with the new information.\n"
- "Assistant:\n"
- f" {BEGIN_SEARCH_QUERY} When was Craig Newmark born?{END_SEARCH_QUERY}\n\n"
- "User:\n"
- f" {BEGIN_SEARCH_RESULT}\nCraig Newmark was born on December 6, 1952...\n{END_SEARCH_RESULT}\n\n"
- "Continues reasoning with the new information...\n\n"
- "Assistant:\nIt's enough to answer the question\n"
- "**Remember**:\n"
- f"- You have a dataset to search, so you just provide a proper search query.\n"
- f"- Use {BEGIN_SEARCH_QUERY} to request a dataset search and end with {END_SEARCH_QUERY}.\n"
- "- The language of query MUST be as the same as 'Question' or 'search result'.\n"
- "- When done searching, continue your reasoning.\n\n"
- 'Please answer the following question. You should think step by step to solve it.\n\n'
- )
-
- relevant_extraction_prompt = """**Task Instruction:**
-
- You are tasked with reading and analyzing web pages based on the following inputs: **Previous Reasoning Steps**, **Current Search Query**, and **Searched Web Pages**. Your objective is to extract relevant and helpful information for **Current Search Query** from the **Searched Web Pages** and seamlessly integrate this information into the **Previous Reasoning Steps** to continue reasoning for the original question.
-
- **Guidelines:**
-
- 1. **Analyze the Searched Web Pages:**
- - Carefully review the content of each searched web page.
- - Identify factual information that is relevant to the **Current Search Query** and can aid in the reasoning process for the original question.
-
- 2. **Extract Relevant Information:**
- - Select the information from the Searched Web Pages that directly contributes to advancing the **Previous Reasoning Steps**.
- - Ensure that the extracted information is accurate and relevant.
-
- 3. **Output Format:**
- - **If the web pages provide helpful information for current search query:** Present the information beginning with `**Final Information**` as shown below.
- - The language of query **MUST BE** as the same as 'Search Query' or 'Web Pages'.\n"
- **Final Information**
-
- [Helpful information]
-
- - **If the web pages do not provide any helpful information for current search query:** Output the following text.
-
- **Final Information**
-
- No helpful information found.
-
- **Inputs:**
- - **Previous Reasoning Steps:**
- {prev_reasoning}
-
- - **Current Search Query:**
- {search_query}
-
- - **Searched Web Pages:**
- {document}
-
- """
-
- executed_search_queries = []
- msg_hisotry = [{"role": "user", "content": f'Question:\"{question}\"\n'}]
- all_reasoning_steps = []
- think = "<think>"
- for ii in range(MAX_SEARCH_LIMIT + 1):
- if ii == MAX_SEARCH_LIMIT - 1:
- summary_think = f"\n{BEGIN_SEARCH_RESULT}\nThe maximum search limit is exceeded. You are not allowed to search.\n{END_SEARCH_RESULT}\n"
- yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None}
- all_reasoning_steps.append(summary_think)
- msg_hisotry.append({"role": "assistant", "content": summary_think})
- break
-
- query_think = ""
- if msg_hisotry[-1]["role"] != "user":
- msg_hisotry.append({"role": "user", "content": "Continues reasoning with the new information.\n"})
- else:
- msg_hisotry[-1]["content"] += "\n\nContinues reasoning with the new information.\n"
- for ans in chat_mdl.chat_streamly(reason_prompt, msg_hisotry, {"temperature": 0.7}):
- ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
- if not ans:
- continue
- query_think = ans
- yield {"answer": think + rm_query_tags(query_think) + "</think>", "reference": {}, "audio_binary": None}
-
- think += rm_query_tags(query_think)
- all_reasoning_steps.append(query_think)
- queries = extract_between(query_think, BEGIN_SEARCH_QUERY, END_SEARCH_QUERY)
- if not queries:
- if ii > 0:
- break
- queries = [question]
-
- for search_query in queries:
- logging.info(f"[THINK]Query: {ii}. {search_query}")
- msg_hisotry.append({"role": "assistant", "content": search_query})
- think += f"\n\n> {ii+1}. {search_query}\n\n"
- yield {"answer": think + "</think>", "reference": {}, "audio_binary": None}
-
- summary_think = ""
- # The search query has been searched in previous steps.
- if search_query in executed_search_queries:
- summary_think = f"\n{BEGIN_SEARCH_RESULT}\nYou have searched this query. Please refer to previous results.\n{END_SEARCH_RESULT}\n"
- yield {"answer": think + summary_think + "</think>", "reference": {}, "audio_binary": None}
- all_reasoning_steps.append(summary_think)
- msg_hisotry.append({"role": "user", "content": summary_think})
- think += summary_think
- continue
-
- truncated_prev_reasoning = ""
- for i, step in enumerate(all_reasoning_steps):
- truncated_prev_reasoning += f"Step {i + 1}: {step}\n\n"
-
- prev_steps = truncated_prev_reasoning.split('\n\n')
- if len(prev_steps) <= 5:
- truncated_prev_reasoning = '\n\n'.join(prev_steps)
- else:
- truncated_prev_reasoning = ''
- for i, step in enumerate(prev_steps):
- if i == 0 or i >= len(prev_steps) - 4 or BEGIN_SEARCH_QUERY in step or BEGIN_SEARCH_RESULT in step:
- truncated_prev_reasoning += step + '\n\n'
- else:
- if truncated_prev_reasoning[-len('\n\n...\n\n'):] != '\n\n...\n\n':
- truncated_prev_reasoning += '...\n\n'
- truncated_prev_reasoning = truncated_prev_reasoning.strip('\n')
-
- # Retrieval procedure:
- # 1. KB search
- # 2. Web search (optional)
- # 3. KG search (optional)
- kbinfos = settings.retrievaler.retrieval(search_query, embd_mdl, tenant_ids, kb_ids, 1, top_n,
- similarity_threshold,
- vector_similarity_weight
- )
- if prompt_config.get("tavily_api_key", "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"):
- tav = Tavily(prompt_config["tavily_api_key"])
- tav_res = tav.retrieve_chunks(" ".join(search_query))
- kbinfos["chunks"].extend(tav_res["chunks"])
- kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
- if prompt_config.get("use_kg"):
- ck = settings.kg_retrievaler.retrieval(search_query,
- tenant_ids,
- kb_ids,
- embd_mdl,
- chat_mdl)
- if ck["content_with_weight"]:
- kbinfos["chunks"].insert(0, ck)
-
- # Merge chunk info for citations
- if not chunk_info["chunks"]:
- for k in chunk_info.keys():
- chunk_info[k] = kbinfos[k]
- else:
- cids = [c["chunk_id"] for c in chunk_info["chunks"]]
- for c in kbinfos["chunks"]:
- if c["chunk_id"] in cids:
- continue
- chunk_info["chunks"].append(c)
- dids = [d["doc_id"] for d in chunk_info["doc_aggs"]]
- for d in kbinfos["doc_aggs"]:
- if d["doc_id"] in dids:
- continue
- chunk_info["doc_aggs"].append(d)
-
- think += "\n\n"
- for ans in chat_mdl.chat_streamly(
- relevant_extraction_prompt.format(
- prev_reasoning=truncated_prev_reasoning,
- search_query=search_query,
- document="\n".join(kb_prompt(kbinfos, 4096))
- ),
- [{"role": "user",
- "content": f'Now you should analyze each web page and find helpful information based on the current search query "{search_query}" and previous reasoning steps.'}],
- {"temperature": 0.7}):
- ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
- if not ans:
- continue
- summary_think = ans
- yield {"answer": think + rm_result_tags(summary_think) + "</think>", "reference": {}, "audio_binary": None}
-
- all_reasoning_steps.append(summary_think)
- msg_hisotry.append(
- {"role": "user", "content": f"\n\n{BEGIN_SEARCH_RESULT}{summary_think}{END_SEARCH_RESULT}\n\n"})
- think += rm_result_tags(summary_think)
- logging.info(f"[THINK]Summary: {ii}. {summary_think}")
-
- yield think + "</think>"
|