| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891 | 
							- #
 - #  Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import asyncio
 - import json
 - import logging
 - import os
 - import random
 - import re
 - import time
 - from abc import ABC
 - from copy import deepcopy
 - from typing import Any, Protocol
 - from urllib.parse import urljoin
 - 
 - import json_repair
 - import litellm
 - import openai
 - import requests
 - from ollama import Client
 - from openai import OpenAI
 - from openai.lib.azure import AzureOpenAI
 - from strenum import StrEnum
 - from zhipuai import ZhipuAI
 - 
 - from rag.llm import FACTORY_DEFAULT_BASE_URL, LITELLM_PROVIDER_PREFIX, SupportedLiteLLMProvider
 - from rag.nlp import is_chinese, is_english
 - from rag.utils import num_tokens_from_string
 - 
 - 
 - # Error message constants
 - class LLMErrorCode(StrEnum):
 -     ERROR_RATE_LIMIT = "RATE_LIMIT_EXCEEDED"
 -     ERROR_AUTHENTICATION = "AUTH_ERROR"
 -     ERROR_INVALID_REQUEST = "INVALID_REQUEST"
 -     ERROR_SERVER = "SERVER_ERROR"
 -     ERROR_TIMEOUT = "TIMEOUT"
 -     ERROR_CONNECTION = "CONNECTION_ERROR"
 -     ERROR_MODEL = "MODEL_ERROR"
 -     ERROR_MAX_ROUNDS = "ERROR_MAX_ROUNDS"
 -     ERROR_CONTENT_FILTER = "CONTENT_FILTERED"
 -     ERROR_QUOTA = "QUOTA_EXCEEDED"
 -     ERROR_MAX_RETRIES = "MAX_RETRIES_EXCEEDED"
 -     ERROR_GENERIC = "GENERIC_ERROR"
 - 
 - 
 - class ReActMode(StrEnum):
 -     FUNCTION_CALL = "function_call"
 -     REACT = "react"
 - 
 - 
 - ERROR_PREFIX = "**ERROR**"
 - LENGTH_NOTIFICATION_CN = "······\n由于大模型的上下文窗口大小限制,回答已经被大模型截断。"
 - LENGTH_NOTIFICATION_EN = "...\nThe answer is truncated by your chosen LLM due to its limitation on context length."
 - 
 - 
 - class ToolCallSession(Protocol):
 -     def tool_call(self, name: str, arguments: dict[str, Any]) -> str: ...
 - 
 - 
 - class Base(ABC):
 -     def __init__(self, key, model_name, base_url, **kwargs):
 -         timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600))
 -         self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout)
 -         self.model_name = model_name
 -         # Configure retry parameters
 -         self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
 -         self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))
 -         self.max_rounds = kwargs.get("max_rounds", 5)
 -         self.is_tools = False
 -         self.tools = []
 -         self.toolcall_sessions = {}
 - 
 -     def _get_delay(self):
 -         """Calculate retry delay time"""
 -         return self.base_delay * random.uniform(10, 150)
 - 
 -     def _classify_error(self, error):
 -         """Classify error based on error message content"""
 -         error_str = str(error).lower()
 - 
 -         keywords_mapping = [
 -             (["quota", "capacity", "credit", "billing", "balance", "欠费"], LLMErrorCode.ERROR_QUOTA),
 -             (["rate limit", "429", "tpm limit", "too many requests", "requests per minute"], LLMErrorCode.ERROR_RATE_LIMIT),
 -             (["auth", "key", "apikey", "401", "forbidden", "permission"], LLMErrorCode.ERROR_AUTHENTICATION),
 -             (["invalid", "bad request", "400", "format", "malformed", "parameter"], LLMErrorCode.ERROR_INVALID_REQUEST),
 -             (["server", "503", "502", "504", "500", "unavailable"], LLMErrorCode.ERROR_SERVER),
 -             (["timeout", "timed out"], LLMErrorCode.ERROR_TIMEOUT),
 -             (["connect", "network", "unreachable", "dns"], LLMErrorCode.ERROR_CONNECTION),
 -             (["filter", "content", "policy", "blocked", "safety", "inappropriate"], LLMErrorCode.ERROR_CONTENT_FILTER),
 -             (["model", "not found", "does not exist", "not available"], LLMErrorCode.ERROR_MODEL),
 -             (["max rounds"], LLMErrorCode.ERROR_MODEL),
 -         ]
 -         for words, code in keywords_mapping:
 -             if re.search("({})".format("|".join(words)), error_str):
 -                 return code
 - 
 -         return LLMErrorCode.ERROR_GENERIC
 - 
 -     def _clean_conf(self, gen_conf):
 -         if "max_tokens" in gen_conf:
 -             del gen_conf["max_tokens"]
 -         return gen_conf
 - 
 -     def _chat(self, history, gen_conf, **kwargs):
 -         logging.info("[HISTORY]" + json.dumps(history, ensure_ascii=False, indent=2))
 -         if self.model_name.lower().find("qwen3") >= 0:
 -             kwargs["extra_body"] = {"enable_thinking": False}
 -         response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf, **kwargs)
 - 
 -         if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]):
 -             return "", 0
 -         ans = response.choices[0].message.content.strip()
 -         if response.choices[0].finish_reason == "length":
 -             ans = self._length_stop(ans)
 -         return ans, self.total_token_count(response)
 - 
 -     def _chat_streamly(self, history, gen_conf, **kwargs):
 -         logging.info("[HISTORY STREAMLY]" + json.dumps(history, ensure_ascii=False, indent=4))
 -         reasoning_start = False
 -         response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf, stop=kwargs.get("stop"))
 -         for resp in response:
 -             if not resp.choices:
 -                 continue
 -             if not resp.choices[0].delta.content:
 -                 resp.choices[0].delta.content = ""
 -             if kwargs.get("with_reasoning", True) and hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content:
 -                 ans = ""
 -                 if not reasoning_start:
 -                     reasoning_start = True
 -                     ans = "<think>"
 -                 ans += resp.choices[0].delta.reasoning_content + "</think>"
 -             else:
 -                 reasoning_start = False
 -                 ans = resp.choices[0].delta.content
 - 
 -             tol = self.total_token_count(resp)
 -             if not tol:
 -                 tol = num_tokens_from_string(resp.choices[0].delta.content)
 - 
 -             if resp.choices[0].finish_reason == "length":
 -                 if is_chinese(ans):
 -                     ans += LENGTH_NOTIFICATION_CN
 -                 else:
 -                     ans += LENGTH_NOTIFICATION_EN
 -             yield ans, tol
 - 
 -     def _length_stop(self, ans):
 -         if is_chinese([ans]):
 -             return ans + LENGTH_NOTIFICATION_CN
 -         return ans + LENGTH_NOTIFICATION_EN
 - 
 -     def _exceptions(self, e, attempt):
 -         logging.exception("OpenAI chat_with_tools")
 -         # Classify the error
 -         error_code = self._classify_error(e)
 -         if attempt == self.max_retries:
 -             error_code = LLMErrorCode.ERROR_MAX_RETRIES
 - 
 -         # Check if it's a rate limit error or server error and not the last attempt
 -         should_retry = error_code == LLMErrorCode.ERROR_RATE_LIMIT or error_code == LLMErrorCode.ERROR_SERVER
 -         if not should_retry:
 -             return f"{ERROR_PREFIX}: {error_code} - {str(e)}"
 - 
 -         delay = self._get_delay()
 -         logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})")
 -         time.sleep(delay)
 - 
 -     def _verbose_tool_use(self, name, args, res):
 -         return "<tool_call>" + json.dumps({"name": name, "args": args, "result": res}, ensure_ascii=False, indent=2) + "</tool_call>"
 - 
 -     def _append_history(self, hist, tool_call, tool_res):
 -         hist.append(
 -             {
 -                 "role": "assistant",
 -                 "tool_calls": [
 -                     {
 -                         "index": tool_call.index,
 -                         "id": tool_call.id,
 -                         "function": {
 -                             "name": tool_call.function.name,
 -                             "arguments": tool_call.function.arguments,
 -                         },
 -                         "type": "function",
 -                     },
 -                 ],
 -             }
 -         )
 -         try:
 -             if isinstance(tool_res, dict):
 -                 tool_res = json.dumps(tool_res, ensure_ascii=False)
 -         finally:
 -             hist.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_res)})
 -         return hist
 - 
 -     def bind_tools(self, toolcall_session, tools):
 -         if not (toolcall_session and tools):
 -             return
 -         self.is_tools = True
 -         self.toolcall_session = toolcall_session
 -         self.tools = tools
 - 
 -     def chat_with_tools(self, system: str, history: list, gen_conf: dict = {}):
 -         gen_conf = self._clean_conf(gen_conf)
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 - 
 -         ans = ""
 -         tk_count = 0
 -         hist = deepcopy(history)
 -         # Implement exponential backoff retry strategy
 -         for attempt in range(self.max_retries + 1):
 -             history = hist
 -             try:
 -                 for _ in range(self.max_rounds + 1):
 -                     logging.info(f"{self.tools=}")
 -                     response = self.client.chat.completions.create(model=self.model_name, messages=history, tools=self.tools, tool_choice="auto", **gen_conf)
 -                     tk_count += self.total_token_count(response)
 -                     if any([not response.choices, not response.choices[0].message]):
 -                         raise Exception(f"500 response structure error. Response: {response}")
 - 
 -                     if not hasattr(response.choices[0].message, "tool_calls") or not response.choices[0].message.tool_calls:
 -                         if hasattr(response.choices[0].message, "reasoning_content") and response.choices[0].message.reasoning_content:
 -                             ans += "<think>" + response.choices[0].message.reasoning_content + "</think>"
 - 
 -                         ans += response.choices[0].message.content
 -                         if response.choices[0].finish_reason == "length":
 -                             ans = self._length_stop(ans)
 - 
 -                         return ans, tk_count
 - 
 -                     for tool_call in response.choices[0].message.tool_calls:
 -                         logging.info(f"Response {tool_call=}")
 -                         name = tool_call.function.name
 -                         try:
 -                             args = json_repair.loads(tool_call.function.arguments)
 -                             tool_response = self.toolcall_session.tool_call(name, args)
 -                             history = self._append_history(history, tool_call, tool_response)
 -                             ans += self._verbose_tool_use(name, args, tool_response)
 -                         except Exception as e:
 -                             logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
 -                             history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)})
 -                             ans += self._verbose_tool_use(name, {}, str(e))
 - 
 -                 logging.warning(f"Exceed max rounds: {self.max_rounds}")
 -                 history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"})
 -                 response, token_count = self._chat(history, gen_conf)
 -                 ans += response
 -                 tk_count += token_count
 -                 return ans, tk_count
 -             except Exception as e:
 -                 e = self._exceptions(e, attempt)
 -                 if e:
 -                     return e, tk_count
 - 
 -         assert False, "Shouldn't be here."
 - 
 -     def chat(self, system, history, gen_conf={}, **kwargs):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         gen_conf = self._clean_conf(gen_conf)
 - 
 -         # Implement exponential backoff retry strategy
 -         for attempt in range(self.max_retries + 1):
 -             try:
 -                 return self._chat(history, gen_conf, **kwargs)
 -             except Exception as e:
 -                 e = self._exceptions(e, attempt)
 -                 if e:
 -                     return e, 0
 -         assert False, "Shouldn't be here."
 - 
 -     def _wrap_toolcall_message(self, stream):
 -         final_tool_calls = {}
 - 
 -         for chunk in stream:
 -             for tool_call in chunk.choices[0].delta.tool_calls or []:
 -                 index = tool_call.index
 - 
 -                 if index not in final_tool_calls:
 -                     final_tool_calls[index] = tool_call
 - 
 -                 final_tool_calls[index].function.arguments += tool_call.function.arguments
 - 
 -         return final_tool_calls
 - 
 -     def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict = {}):
 -         gen_conf = self._clean_conf(gen_conf)
 -         tools = self.tools
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 - 
 -         total_tokens = 0
 -         hist = deepcopy(history)
 -         # Implement exponential backoff retry strategy
 -         for attempt in range(self.max_retries + 1):
 -             history = hist
 -             try:
 -                 for _ in range(self.max_rounds + 1):
 -                     reasoning_start = False
 -                     logging.info(f"{tools=}")
 -                     response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, tools=tools, tool_choice="auto", **gen_conf)
 -                     final_tool_calls = {}
 -                     answer = ""
 -                     for resp in response:
 -                         if resp.choices[0].delta.tool_calls:
 -                             for tool_call in resp.choices[0].delta.tool_calls or []:
 -                                 index = tool_call.index
 - 
 -                                 if index not in final_tool_calls:
 -                                     if not tool_call.function.arguments:
 -                                         tool_call.function.arguments = ""
 -                                     final_tool_calls[index] = tool_call
 -                                 else:
 -                                     final_tool_calls[index].function.arguments += tool_call.function.arguments if tool_call.function.arguments else ""
 -                             continue
 - 
 -                         if any([not resp.choices, not resp.choices[0].delta, not hasattr(resp.choices[0].delta, "content")]):
 -                             raise Exception("500 response structure error.")
 - 
 -                         if not resp.choices[0].delta.content:
 -                             resp.choices[0].delta.content = ""
 - 
 -                         if hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content:
 -                             ans = ""
 -                             if not reasoning_start:
 -                                 reasoning_start = True
 -                                 ans = "<think>"
 -                             ans += resp.choices[0].delta.reasoning_content + "</think>"
 -                             yield ans
 -                         else:
 -                             reasoning_start = False
 -                             answer += resp.choices[0].delta.content
 -                             yield resp.choices[0].delta.content
 - 
 -                         tol = self.total_token_count(resp)
 -                         if not tol:
 -                             total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
 -                         else:
 -                             total_tokens += tol
 - 
 -                         finish_reason = resp.choices[0].finish_reason if hasattr(resp.choices[0], "finish_reason") else ""
 -                         if finish_reason == "length":
 -                             yield self._length_stop("")
 - 
 -                     if answer:
 -                         yield total_tokens
 -                         return
 - 
 -                     for tool_call in final_tool_calls.values():
 -                         name = tool_call.function.name
 -                         try:
 -                             args = json_repair.loads(tool_call.function.arguments)
 -                             yield self._verbose_tool_use(name, args, "Begin to call...")
 -                             tool_response = self.toolcall_session.tool_call(name, args)
 -                             history = self._append_history(history, tool_call, tool_response)
 -                             yield self._verbose_tool_use(name, args, tool_response)
 -                         except Exception as e:
 -                             logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
 -                             history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)})
 -                             yield self._verbose_tool_use(name, {}, str(e))
 - 
 -                 logging.warning(f"Exceed max rounds: {self.max_rounds}")
 -                 history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"})
 -                 response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
 -                 for resp in response:
 -                     if any([not resp.choices, not resp.choices[0].delta, not hasattr(resp.choices[0].delta, "content")]):
 -                         raise Exception("500 response structure error.")
 -                     if not resp.choices[0].delta.content:
 -                         resp.choices[0].delta.content = ""
 -                         continue
 -                     tol = self.total_token_count(resp)
 -                     if not tol:
 -                         total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
 -                     else:
 -                         total_tokens += tol
 -                     answer += resp.choices[0].delta.content
 -                     yield resp.choices[0].delta.content
 - 
 -                 yield total_tokens
 -                 return
 - 
 -             except Exception as e:
 -                 e = self._exceptions(e, attempt)
 -                 if e:
 -                     yield e
 -                     yield total_tokens
 -                     return
 - 
 -         assert False, "Shouldn't be here."
 - 
 -     def chat_streamly(self, system, history, gen_conf: dict = {}, **kwargs):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         gen_conf = self._clean_conf(gen_conf)
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             for delta_ans, tol in self._chat_streamly(history, gen_conf, **kwargs):
 -                 yield delta_ans
 -                 total_tokens += tol
 -         except openai.APIError as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 -     def total_token_count(self, resp):
 -         try:
 -             return resp.usage.total_tokens
 -         except Exception:
 -             pass
 -         try:
 -             return resp["usage"]["total_tokens"]
 -         except Exception:
 -             pass
 -         return 0
 - 
 -     def _calculate_dynamic_ctx(self, history):
 -         """Calculate dynamic context window size"""
 - 
 -         def count_tokens(text):
 -             """Calculate token count for text"""
 -             # Simple calculation: 1 token per ASCII character
 -             # 2 tokens for non-ASCII characters (Chinese, Japanese, Korean, etc.)
 -             total = 0
 -             for char in text:
 -                 if ord(char) < 128:  # ASCII characters
 -                     total += 1
 -                 else:  # Non-ASCII characters (Chinese, Japanese, Korean, etc.)
 -                     total += 2
 -             return total
 - 
 -         # Calculate total tokens for all messages
 -         total_tokens = 0
 -         for message in history:
 -             content = message.get("content", "")
 -             # Calculate content tokens
 -             content_tokens = count_tokens(content)
 -             # Add role marker token overhead
 -             role_tokens = 4
 -             total_tokens += content_tokens + role_tokens
 - 
 -         # Apply 1.2x buffer ratio
 -         total_tokens_with_buffer = int(total_tokens * 1.2)
 - 
 -         if total_tokens_with_buffer <= 8192:
 -             ctx_size = 8192
 -         else:
 -             ctx_multiplier = (total_tokens_with_buffer // 8192) + 1
 -             ctx_size = ctx_multiplier * 8192
 - 
 -         return ctx_size
 - 
 - 
 - class GptTurbo(Base):
 -     _FACTORY_NAME = "OpenAI"
 - 
 -     def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1", **kwargs):
 -         if not base_url:
 -             base_url = "https://api.openai.com/v1"
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class XinferenceChat(Base):
 -     _FACTORY_NAME = "Xinference"
 - 
 -     def __init__(self, key=None, model_name="", base_url="", **kwargs):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         base_url = urljoin(base_url, "v1")
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class HuggingFaceChat(Base):
 -     _FACTORY_NAME = "HuggingFace"
 - 
 -     def __init__(self, key=None, model_name="", base_url="", **kwargs):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         base_url = urljoin(base_url, "v1")
 -         super().__init__(key, model_name.split("___")[0], base_url, **kwargs)
 - 
 - 
 - class ModelScopeChat(Base):
 -     _FACTORY_NAME = "ModelScope"
 - 
 -     def __init__(self, key=None, model_name="", base_url="", **kwargs):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         base_url = urljoin(base_url, "v1")
 -         super().__init__(key, model_name.split("___")[0], base_url, **kwargs)
 - 
 - 
 - class AzureChat(Base):
 -     _FACTORY_NAME = "Azure-OpenAI"
 - 
 -     def __init__(self, key, model_name, base_url, **kwargs):
 -         api_key = json.loads(key).get("api_key", "")
 -         api_version = json.loads(key).get("api_version", "2024-02-01")
 -         super().__init__(key, model_name, base_url, **kwargs)
 -         self.client = AzureOpenAI(api_key=api_key, azure_endpoint=base_url, api_version=api_version)
 -         self.model_name = model_name
 - 
 - 
 - class BaiChuanChat(Base):
 -     _FACTORY_NAME = "BaiChuan"
 - 
 -     def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1", **kwargs):
 -         if not base_url:
 -             base_url = "https://api.baichuan-ai.com/v1"
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 -     @staticmethod
 -     def _format_params(params):
 -         return {
 -             "temperature": params.get("temperature", 0.3),
 -             "top_p": params.get("top_p", 0.85),
 -         }
 - 
 -     def _clean_conf(self, gen_conf):
 -         return {
 -             "temperature": gen_conf.get("temperature", 0.3),
 -             "top_p": gen_conf.get("top_p", 0.85),
 -         }
 - 
 -     def _chat(self, history, gen_conf={}, **kwargs):
 -         response = self.client.chat.completions.create(
 -             model=self.model_name,
 -             messages=history,
 -             extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]},
 -             **gen_conf,
 -         )
 -         ans = response.choices[0].message.content.strip()
 -         if response.choices[0].finish_reason == "length":
 -             if is_chinese([ans]):
 -                 ans += LENGTH_NOTIFICATION_CN
 -             else:
 -                 ans += LENGTH_NOTIFICATION_EN
 -         return ans, self.total_token_count(response)
 - 
 -     def chat_streamly(self, system, history, gen_conf={}, **kwargs):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         if "max_tokens" in gen_conf:
 -             del gen_conf["max_tokens"]
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]},
 -                 stream=True,
 -                 **self._format_params(gen_conf),
 -             )
 -             for resp in response:
 -                 if not resp.choices:
 -                     continue
 -                 if not resp.choices[0].delta.content:
 -                     resp.choices[0].delta.content = ""
 -                 ans = resp.choices[0].delta.content
 -                 tol = self.total_token_count(resp)
 -                 if not tol:
 -                     total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
 -                 else:
 -                     total_tokens = tol
 -                 if resp.choices[0].finish_reason == "length":
 -                     if is_chinese([ans]):
 -                         ans += LENGTH_NOTIFICATION_CN
 -                     else:
 -                         ans += LENGTH_NOTIFICATION_EN
 -                 yield ans
 - 
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - class ZhipuChat(Base):
 -     _FACTORY_NAME = "ZHIPU-AI"
 - 
 -     def __init__(self, key, model_name="glm-3-turbo", base_url=None, **kwargs):
 -         super().__init__(key, model_name, base_url=base_url, **kwargs)
 - 
 -         self.client = ZhipuAI(api_key=key)
 -         self.model_name = model_name
 - 
 -     def _clean_conf(self, gen_conf):
 -         if "max_tokens" in gen_conf:
 -             del gen_conf["max_tokens"]
 -         if "presence_penalty" in gen_conf:
 -             del gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf:
 -             del gen_conf["frequency_penalty"]
 -         return gen_conf
 - 
 -     def chat_with_tools(self, system: str, history: list, gen_conf: dict):
 -         if "presence_penalty" in gen_conf:
 -             del gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf:
 -             del gen_conf["frequency_penalty"]
 - 
 -         return super().chat_with_tools(system, history, gen_conf)
 - 
 -     def chat_streamly(self, system, history, gen_conf={}, **kwargs):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         if "max_tokens" in gen_conf:
 -             del gen_conf["max_tokens"]
 -         if "presence_penalty" in gen_conf:
 -             del gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf:
 -             del gen_conf["frequency_penalty"]
 -         ans = ""
 -         tk_count = 0
 -         try:
 -             logging.info(json.dumps(history, ensure_ascii=False, indent=2))
 -             response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
 -             for resp in response:
 -                 if not resp.choices[0].delta.content:
 -                     continue
 -                 delta = resp.choices[0].delta.content
 -                 ans = delta
 -                 if resp.choices[0].finish_reason == "length":
 -                     if is_chinese(ans):
 -                         ans += LENGTH_NOTIFICATION_CN
 -                     else:
 -                         ans += LENGTH_NOTIFICATION_EN
 -                     tk_count = self.total_token_count(resp)
 -                 if resp.choices[0].finish_reason == "stop":
 -                     tk_count = self.total_token_count(resp)
 -                 yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield tk_count
 - 
 -     def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict):
 -         if "presence_penalty" in gen_conf:
 -             del gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf:
 -             del gen_conf["frequency_penalty"]
 - 
 -         return super().chat_streamly_with_tools(system, history, gen_conf)
 - 
 - 
 - class OllamaChat(Base):
 -     _FACTORY_NAME = "Ollama"
 - 
 -     def __init__(self, key, model_name, base_url=None, **kwargs):
 -         super().__init__(key, model_name, base_url=base_url, **kwargs)
 - 
 -         self.client = Client(host=base_url) if not key or key == "x" else Client(host=base_url, headers={"Authorization": f"Bearer {key}"})
 -         self.model_name = model_name
 -         self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1)))
 - 
 -     def _clean_conf(self, gen_conf):
 -         options = {}
 -         if "max_tokens" in gen_conf:
 -             options["num_predict"] = gen_conf["max_tokens"]
 -         for k in ["temperature", "top_p", "presence_penalty", "frequency_penalty"]:
 -             if k not in gen_conf:
 -                 continue
 -             options[k] = gen_conf[k]
 -         return options
 - 
 -     def _chat(self, history, gen_conf={}, **kwargs):
 -         # Calculate context size
 -         ctx_size = self._calculate_dynamic_ctx(history)
 - 
 -         gen_conf["num_ctx"] = ctx_size
 -         response = self.client.chat(model=self.model_name, messages=history, options=gen_conf, keep_alive=self.keep_alive)
 -         ans = response["message"]["content"].strip()
 -         token_count = response.get("eval_count", 0) + response.get("prompt_eval_count", 0)
 -         return ans, token_count
 - 
 -     def chat_streamly(self, system, history, gen_conf={}, **kwargs):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         if "max_tokens" in gen_conf:
 -             del gen_conf["max_tokens"]
 -         try:
 -             # Calculate context size
 -             ctx_size = self._calculate_dynamic_ctx(history)
 -             options = {"num_ctx": ctx_size}
 -             if "temperature" in gen_conf:
 -                 options["temperature"] = gen_conf["temperature"]
 -             if "max_tokens" in gen_conf:
 -                 options["num_predict"] = gen_conf["max_tokens"]
 -             if "top_p" in gen_conf:
 -                 options["top_p"] = gen_conf["top_p"]
 -             if "presence_penalty" in gen_conf:
 -                 options["presence_penalty"] = gen_conf["presence_penalty"]
 -             if "frequency_penalty" in gen_conf:
 -                 options["frequency_penalty"] = gen_conf["frequency_penalty"]
 - 
 -             ans = ""
 -             try:
 -                 response = self.client.chat(model=self.model_name, messages=history, stream=True, options=options, keep_alive=self.keep_alive)
 -                 for resp in response:
 -                     if resp["done"]:
 -                         token_count = resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
 -                         yield token_count
 -                     ans = resp["message"]["content"]
 -                     yield ans
 -             except Exception as e:
 -                 yield ans + "\n**ERROR**: " + str(e)
 -             yield 0
 -         except Exception as e:
 -             yield "**ERROR**: " + str(e)
 -             yield 0
 - 
 - 
 - class LocalAIChat(Base):
 -     _FACTORY_NAME = "LocalAI"
 - 
 -     def __init__(self, key, model_name, base_url=None, **kwargs):
 -         super().__init__(key, model_name, base_url=base_url, **kwargs)
 - 
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         base_url = urljoin(base_url, "v1")
 -         self.client = OpenAI(api_key="empty", base_url=base_url)
 -         self.model_name = model_name.split("___")[0]
 - 
 - 
 - class LocalLLM(Base):
 -     def __init__(self, key, model_name, base_url=None, **kwargs):
 -         super().__init__(key, model_name, base_url=base_url, **kwargs)
 -         from jina import Client
 - 
 -         self.client = Client(port=12345, protocol="grpc", asyncio=True)
 - 
 -     def _prepare_prompt(self, system, history, gen_conf):
 -         from rag.svr.jina_server import Prompt
 - 
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         return Prompt(message=history, gen_conf=gen_conf)
 - 
 -     def _stream_response(self, endpoint, prompt):
 -         from rag.svr.jina_server import Generation
 - 
 -         answer = ""
 -         try:
 -             res = self.client.stream_doc(on=endpoint, inputs=prompt, return_type=Generation)
 -             loop = asyncio.get_event_loop()
 -             try:
 -                 while True:
 -                     answer = loop.run_until_complete(res.__anext__()).text
 -                     yield answer
 -             except StopAsyncIteration:
 -                 pass
 -         except Exception as e:
 -             yield answer + "\n**ERROR**: " + str(e)
 -         yield num_tokens_from_string(answer)
 - 
 -     def chat(self, system, history, gen_conf={}, **kwargs):
 -         if "max_tokens" in gen_conf:
 -             del gen_conf["max_tokens"]
 -         prompt = self._prepare_prompt(system, history, gen_conf)
 -         chat_gen = self._stream_response("/chat", prompt)
 -         ans = next(chat_gen)
 -         total_tokens = next(chat_gen)
 -         return ans, total_tokens
 - 
 -     def chat_streamly(self, system, history, gen_conf={}, **kwargs):
 -         if "max_tokens" in gen_conf:
 -             del gen_conf["max_tokens"]
 -         prompt = self._prepare_prompt(system, history, gen_conf)
 -         return self._stream_response("/stream", prompt)
 - 
 - 
 - class VolcEngineChat(Base):
 -     _FACTORY_NAME = "VolcEngine"
 - 
 -     def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3", **kwargs):
 -         """
 -         Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
 -         Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use
 -         model_name is for display only
 -         """
 -         base_url = base_url if base_url else "https://ark.cn-beijing.volces.com/api/v3"
 -         ark_api_key = json.loads(key).get("ark_api_key", "")
 -         model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
 -         super().__init__(ark_api_key, model_name, base_url, **kwargs)
 - 
 - 
 - class MiniMaxChat(Base):
 -     _FACTORY_NAME = "MiniMax"
 - 
 -     def __init__(self, key, model_name, base_url="https://api.minimax.chat/v1/text/chatcompletion_v2", **kwargs):
 -         super().__init__(key, model_name, base_url=base_url, **kwargs)
 - 
 -         if not base_url:
 -             base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
 -         self.base_url = base_url
 -         self.model_name = model_name
 -         self.api_key = key
 - 
 -     def _clean_conf(self, gen_conf):
 -         for k in list(gen_conf.keys()):
 -             if k not in ["temperature", "top_p", "max_tokens"]:
 -                 del gen_conf[k]
 -         return gen_conf
 - 
 -     def _chat(self, history, gen_conf):
 -         headers = {
 -             "Authorization": f"Bearer {self.api_key}",
 -             "Content-Type": "application/json",
 -         }
 -         payload = json.dumps({"model": self.model_name, "messages": history, **gen_conf})
 -         response = requests.request("POST", url=self.base_url, headers=headers, data=payload)
 -         response = response.json()
 -         ans = response["choices"][0]["message"]["content"].strip()
 -         if response["choices"][0]["finish_reason"] == "length":
 -             if is_chinese(ans):
 -                 ans += LENGTH_NOTIFICATION_CN
 -             else:
 -                 ans += LENGTH_NOTIFICATION_EN
 -         return ans, self.total_token_count(response)
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         for k in list(gen_conf.keys()):
 -             if k not in ["temperature", "top_p", "max_tokens"]:
 -                 del gen_conf[k]
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             headers = {
 -                 "Authorization": f"Bearer {self.api_key}",
 -                 "Content-Type": "application/json",
 -             }
 -             payload = json.dumps(
 -                 {
 -                     "model": self.model_name,
 -                     "messages": history,
 -                     "stream": True,
 -                     **gen_conf,
 -                 }
 -             )
 -             response = requests.request(
 -                 "POST",
 -                 url=self.base_url,
 -                 headers=headers,
 -                 data=payload,
 -             )
 -             for resp in response.text.split("\n\n")[:-1]:
 -                 resp = json.loads(resp[6:])
 -                 text = ""
 -                 if "choices" in resp and "delta" in resp["choices"][0]:
 -                     text = resp["choices"][0]["delta"]["content"]
 -                 ans = text
 -                 tol = self.total_token_count(resp)
 -                 if not tol:
 -                     total_tokens += num_tokens_from_string(text)
 -                 else:
 -                     total_tokens = tol
 -                 yield ans
 - 
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - class MistralChat(Base):
 -     _FACTORY_NAME = "Mistral"
 - 
 -     def __init__(self, key, model_name, base_url=None, **kwargs):
 -         super().__init__(key, model_name, base_url=base_url, **kwargs)
 - 
 -         from mistralai.client import MistralClient
 - 
 -         self.client = MistralClient(api_key=key)
 -         self.model_name = model_name
 - 
 -     def _clean_conf(self, gen_conf):
 -         for k in list(gen_conf.keys()):
 -             if k not in ["temperature", "top_p", "max_tokens"]:
 -                 del gen_conf[k]
 -         return gen_conf
 - 
 -     def _chat(self, history, gen_conf={}, **kwargs):
 -         response = self.client.chat(model=self.model_name, messages=history, **gen_conf)
 -         ans = response.choices[0].message.content
 -         if response.choices[0].finish_reason == "length":
 -             if is_chinese(ans):
 -                 ans += LENGTH_NOTIFICATION_CN
 -             else:
 -                 ans += LENGTH_NOTIFICATION_EN
 -         return ans, self.total_token_count(response)
 - 
 -     def chat_streamly(self, system, history, gen_conf={}, **kwargs):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         for k in list(gen_conf.keys()):
 -             if k not in ["temperature", "top_p", "max_tokens"]:
 -                 del gen_conf[k]
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             response = self.client.chat_stream(model=self.model_name, messages=history, **gen_conf, **kwargs)
 -             for resp in response:
 -                 if not resp.choices or not resp.choices[0].delta.content:
 -                     continue
 -                 ans = resp.choices[0].delta.content
 -                 total_tokens += 1
 -                 if resp.choices[0].finish_reason == "length":
 -                     if is_chinese(ans):
 -                         ans += LENGTH_NOTIFICATION_CN
 -                     else:
 -                         ans += LENGTH_NOTIFICATION_EN
 -                 yield ans
 - 
 -         except openai.APIError as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - ## openrouter
 - class OpenRouterChat(Base):
 -     _FACTORY_NAME = "OpenRouter"
 - 
 -     def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1", **kwargs):
 -         if not base_url:
 -             base_url = "https://openrouter.ai/api/v1"
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class StepFunChat(Base):
 -     _FACTORY_NAME = "StepFun"
 - 
 -     def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1", **kwargs):
 -         if not base_url:
 -             base_url = "https://api.stepfun.com/v1"
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class LmStudioChat(Base):
 -     _FACTORY_NAME = "LM-Studio"
 - 
 -     def __init__(self, key, model_name, base_url, **kwargs):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         base_url = urljoin(base_url, "v1")
 -         super().__init__(key, model_name, base_url, **kwargs)
 -         self.client = OpenAI(api_key="lm-studio", base_url=base_url)
 -         self.model_name = model_name
 - 
 - 
 - class OpenAI_APIChat(Base):
 -     _FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
 - 
 -     def __init__(self, key, model_name, base_url, **kwargs):
 -         if not base_url:
 -             raise ValueError("url cannot be None")
 -         model_name = model_name.split("___")[0]
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class PPIOChat(Base):
 -     _FACTORY_NAME = "PPIO"
 - 
 -     def __init__(self, key, model_name, base_url="https://api.ppinfra.com/v3/openai", **kwargs):
 -         if not base_url:
 -             base_url = "https://api.ppinfra.com/v3/openai"
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class LeptonAIChat(Base):
 -     _FACTORY_NAME = "LeptonAI"
 - 
 -     def __init__(self, key, model_name, base_url=None, **kwargs):
 -         if not base_url:
 -             base_url = urljoin("https://" + model_name + ".lepton.run", "api/v1")
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class PerfXCloudChat(Base):
 -     _FACTORY_NAME = "PerfXCloud"
 - 
 -     def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1", **kwargs):
 -         if not base_url:
 -             base_url = "https://cloud.perfxlab.cn/v1"
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class UpstageChat(Base):
 -     _FACTORY_NAME = "Upstage"
 - 
 -     def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar", **kwargs):
 -         if not base_url:
 -             base_url = "https://api.upstage.ai/v1/solar"
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class NovitaAIChat(Base):
 -     _FACTORY_NAME = "NovitaAI"
 - 
 -     def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai", **kwargs):
 -         if not base_url:
 -             base_url = "https://api.novita.ai/v3/openai"
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class SILICONFLOWChat(Base):
 -     _FACTORY_NAME = "SILICONFLOW"
 - 
 -     def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1", **kwargs):
 -         if not base_url:
 -             base_url = "https://api.siliconflow.cn/v1"
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class YiChat(Base):
 -     _FACTORY_NAME = "01.AI"
 - 
 -     def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1", **kwargs):
 -         if not base_url:
 -             base_url = "https://api.lingyiwanwu.com/v1"
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class GiteeChat(Base):
 -     _FACTORY_NAME = "GiteeAI"
 - 
 -     def __init__(self, key, model_name, base_url="https://ai.gitee.com/v1/", **kwargs):
 -         if not base_url:
 -             base_url = "https://ai.gitee.com/v1/"
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class ReplicateChat(Base):
 -     _FACTORY_NAME = "Replicate"
 - 
 -     def __init__(self, key, model_name, base_url=None, **kwargs):
 -         super().__init__(key, model_name, base_url=base_url, **kwargs)
 - 
 -         from replicate.client import Client
 - 
 -         self.model_name = model_name
 -         self.client = Client(api_token=key)
 - 
 -     def _chat(self, history, gen_conf={}, **kwargs):
 -         system = history[0]["content"] if history and history[0]["role"] == "system" else ""
 -         prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:] if item["role"] != "system"])
 -         response = self.client.run(
 -             self.model_name,
 -             input={"system_prompt": system, "prompt": prompt, **gen_conf},
 -         )
 -         ans = "".join(response)
 -         return ans, num_tokens_from_string(ans)
 - 
 -     def chat_streamly(self, system, history, gen_conf={}, **kwargs):
 -         if "max_tokens" in gen_conf:
 -             del gen_conf["max_tokens"]
 -         prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:]])
 -         ans = ""
 -         try:
 -             response = self.client.run(
 -                 self.model_name,
 -                 input={"system_prompt": system, "prompt": prompt, **gen_conf},
 -             )
 -             for resp in response:
 -                 ans = resp
 -                 yield ans
 - 
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield num_tokens_from_string(ans)
 - 
 - 
 - class HunyuanChat(Base):
 -     _FACTORY_NAME = "Tencent Hunyuan"
 - 
 -     def __init__(self, key, model_name, base_url=None, **kwargs):
 -         super().__init__(key, model_name, base_url=base_url, **kwargs)
 - 
 -         from tencentcloud.common import credential
 -         from tencentcloud.hunyuan.v20230901 import hunyuan_client
 - 
 -         key = json.loads(key)
 -         sid = key.get("hunyuan_sid", "")
 -         sk = key.get("hunyuan_sk", "")
 -         cred = credential.Credential(sid, sk)
 -         self.model_name = model_name
 -         self.client = hunyuan_client.HunyuanClient(cred, "")
 - 
 -     def _clean_conf(self, gen_conf):
 -         _gen_conf = {}
 -         if "temperature" in gen_conf:
 -             _gen_conf["Temperature"] = gen_conf["temperature"]
 -         if "top_p" in gen_conf:
 -             _gen_conf["TopP"] = gen_conf["top_p"]
 -         return _gen_conf
 - 
 -     def _chat(self, history, gen_conf={}, **kwargs):
 -         from tencentcloud.hunyuan.v20230901 import models
 - 
 -         hist = [{k.capitalize(): v for k, v in item.items()} for item in history]
 -         req = models.ChatCompletionsRequest()
 -         params = {"Model": self.model_name, "Messages": hist, **gen_conf}
 -         req.from_json_string(json.dumps(params))
 -         response = self.client.ChatCompletions(req)
 -         ans = response.Choices[0].Message.Content
 -         return ans, response.Usage.TotalTokens
 - 
 -     def chat_streamly(self, system, history, gen_conf={}, **kwargs):
 -         from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
 -             TencentCloudSDKException,
 -         )
 -         from tencentcloud.hunyuan.v20230901 import models
 - 
 -         _gen_conf = {}
 -         _history = [{k.capitalize(): v for k, v in item.items()} for item in history]
 -         if system:
 -             _history.insert(0, {"Role": "system", "Content": system})
 -         if "max_tokens" in gen_conf:
 -             del gen_conf["max_tokens"]
 -         if "temperature" in gen_conf:
 -             _gen_conf["Temperature"] = gen_conf["temperature"]
 -         if "top_p" in gen_conf:
 -             _gen_conf["TopP"] = gen_conf["top_p"]
 -         req = models.ChatCompletionsRequest()
 -         params = {
 -             "Model": self.model_name,
 -             "Messages": _history,
 -             "Stream": True,
 -             **_gen_conf,
 -         }
 -         req.from_json_string(json.dumps(params))
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             response = self.client.ChatCompletions(req)
 -             for resp in response:
 -                 resp = json.loads(resp["data"])
 -                 if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]:
 -                     continue
 -                 ans = resp["Choices"][0]["Delta"]["Content"]
 -                 total_tokens += 1
 - 
 -                 yield ans
 - 
 -         except TencentCloudSDKException as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - 
 - class SparkChat(Base):
 -     _FACTORY_NAME = "XunFei Spark"
 - 
 -     def __init__(self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1", **kwargs):
 -         if not base_url:
 -             base_url = "https://spark-api-open.xf-yun.com/v1"
 -         model2version = {
 -             "Spark-Max": "generalv3.5",
 -             "Spark-Lite": "general",
 -             "Spark-Pro": "generalv3",
 -             "Spark-Pro-128K": "pro-128k",
 -             "Spark-4.0-Ultra": "4.0Ultra",
 -         }
 -         version2model = {v: k for k, v in model2version.items()}
 -         assert model_name in model2version or model_name in version2model, f"The given model name is not supported yet. Support: {list(model2version.keys())}"
 -         if model_name in model2version:
 -             model_version = model2version[model_name]
 -         else:
 -             model_version = model_name
 -         super().__init__(key, model_version, base_url, **kwargs)
 - 
 - 
 - class BaiduYiyanChat(Base):
 -     _FACTORY_NAME = "BaiduYiyan"
 - 
 -     def __init__(self, key, model_name, base_url=None, **kwargs):
 -         super().__init__(key, model_name, base_url=base_url, **kwargs)
 - 
 -         import qianfan
 - 
 -         key = json.loads(key)
 -         ak = key.get("yiyan_ak", "")
 -         sk = key.get("yiyan_sk", "")
 -         self.client = qianfan.ChatCompletion(ak=ak, sk=sk)
 -         self.model_name = model_name.lower()
 - 
 -     def _clean_conf(self, gen_conf):
 -         gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
 -         if "max_tokens" in gen_conf:
 -             del gen_conf["max_tokens"]
 -         return gen_conf
 - 
 -     def _chat(self, history, gen_conf):
 -         system = history[0]["content"] if history and history[0]["role"] == "system" else ""
 -         response = self.client.do(model=self.model_name, messages=[h for h in history if h["role"] != "system"], system=system, **gen_conf).body
 -         ans = response["result"]
 -         return ans, self.total_token_count(response)
 - 
 -     def chat_streamly(self, system, history, gen_conf={}, **kwargs):
 -         gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
 -         if "max_tokens" in gen_conf:
 -             del gen_conf["max_tokens"]
 -         ans = ""
 -         total_tokens = 0
 - 
 -         try:
 -             response = self.client.do(model=self.model_name, messages=history, system=system, stream=True, **gen_conf)
 -             for resp in response:
 -                 resp = resp.body
 -                 ans = resp["result"]
 -                 total_tokens = self.total_token_count(resp)
 - 
 -                 yield ans
 - 
 -         except Exception as e:
 -             return ans + "\n**ERROR**: " + str(e), 0
 - 
 -         yield total_tokens
 - 
 - 
 - class GoogleChat(Base):
 -     _FACTORY_NAME = "Google Cloud"
 - 
 -     def __init__(self, key, model_name, base_url=None, **kwargs):
 -         super().__init__(key, model_name, base_url=base_url, **kwargs)
 - 
 -         import base64
 - 
 -         from google.oauth2 import service_account
 - 
 -         key = json.loads(key)
 -         access_token = json.loads(base64.b64decode(key.get("google_service_account_key", "")))
 -         project_id = key.get("google_project_id", "")
 -         region = key.get("google_region", "")
 - 
 -         scopes = ["https://www.googleapis.com/auth/cloud-platform"]
 -         self.model_name = model_name
 - 
 -         if "claude" in self.model_name:
 -             from anthropic import AnthropicVertex
 -             from google.auth.transport.requests import Request
 - 
 -             if access_token:
 -                 credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
 -                 request = Request()
 -                 credits.refresh(request)
 -                 token = credits.token
 -                 self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token)
 -             else:
 -                 self.client = AnthropicVertex(region=region, project_id=project_id)
 -         else:
 -             import vertexai.generative_models as glm
 -             from google.cloud import aiplatform
 - 
 -             if access_token:
 -                 credits = service_account.Credentials.from_service_account_info(access_token)
 -                 aiplatform.init(credentials=credits, project=project_id, location=region)
 -             else:
 -                 aiplatform.init(project=project_id, location=region)
 -             self.client = glm.GenerativeModel(model_name=self.model_name)
 - 
 -     def _clean_conf(self, gen_conf):
 -         if "claude" in self.model_name:
 -             if "max_tokens" in gen_conf:
 -                 del gen_conf["max_tokens"]
 -         else:
 -             if "max_tokens" in gen_conf:
 -                 gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
 -             for k in list(gen_conf.keys()):
 -                 if k not in ["temperature", "top_p", "max_output_tokens"]:
 -                     del gen_conf[k]
 -         return gen_conf
 - 
 -     def _chat(self, history, gen_conf={}, **kwargs):
 -         system = history[0]["content"] if history and history[0]["role"] == "system" else ""
 -         if "claude" in self.model_name:
 -             response = self.client.messages.create(
 -                 model=self.model_name,
 -                 messages=[h for h in history if h["role"] != "system"],
 -                 system=system,
 -                 stream=False,
 -                 **gen_conf,
 -             ).json()
 -             ans = response["content"][0]["text"]
 -             if response["stop_reason"] == "max_tokens":
 -                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -             return (
 -                 ans,
 -                 response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
 -             )
 - 
 -         self.client._system_instruction = system
 -         hist = []
 -         for item in history:
 -             if item["role"] == "system":
 -                 continue
 -             hist.append(deepcopy(item))
 -             item = hist[-1]
 -             if "role" in item and item["role"] == "assistant":
 -                 item["role"] = "model"
 -             if "content" in item:
 -                 item["parts"] = [
 -                     {
 -                         "text": item.pop("content"),
 -                     }
 -                 ]
 - 
 -         response = self.client.generate_content(hist, generation_config=gen_conf)
 -         ans = response.text
 -         return ans, response.usage_metadata.total_token_count
 - 
 -     def chat_streamly(self, system, history, gen_conf={}, **kwargs):
 -         if "claude" in self.model_name:
 -             if "max_tokens" in gen_conf:
 -                 del gen_conf["max_tokens"]
 -             ans = ""
 -             total_tokens = 0
 -             try:
 -                 response = self.client.messages.create(
 -                     model=self.model_name,
 -                     messages=history,
 -                     system=system,
 -                     stream=True,
 -                     **gen_conf,
 -                 )
 -                 for res in response.iter_lines():
 -                     res = res.decode("utf-8")
 -                     if "content_block_delta" in res and "data" in res:
 -                         text = json.loads(res[6:])["delta"]["text"]
 -                         ans = text
 -                         total_tokens += num_tokens_from_string(text)
 -             except Exception as e:
 -                 yield ans + "\n**ERROR**: " + str(e)
 - 
 -             yield total_tokens
 -         else:
 -             self.client._system_instruction = system
 -             if "max_tokens" in gen_conf:
 -                 gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
 -             for k in list(gen_conf.keys()):
 -                 if k not in ["temperature", "top_p", "max_output_tokens"]:
 -                     del gen_conf[k]
 -             for item in history:
 -                 if "role" in item and item["role"] == "assistant":
 -                     item["role"] = "model"
 -                 if "content" in item:
 -                     item["parts"] = item.pop("content")
 -             ans = ""
 -             try:
 -                 response = self.model.generate_content(history, generation_config=gen_conf, stream=True)
 -                 for resp in response:
 -                     ans = resp.text
 -                     yield ans
 - 
 -             except Exception as e:
 -                 yield ans + "\n**ERROR**: " + str(e)
 - 
 -             yield response._chunks[-1].usage_metadata.total_token_count
 - 
 - 
 - class GPUStackChat(Base):
 -     _FACTORY_NAME = "GPUStack"
 - 
 -     def __init__(self, key=None, model_name="", base_url="", **kwargs):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         base_url = urljoin(base_url, "v1")
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class Ai302Chat(Base):
 -     _FACTORY_NAME = "302.AI"
 - 
 -     def __init__(self, key, model_name, base_url="https://api.302.ai/v1", **kwargs):
 -         if not base_url:
 -             base_url = "https://api.302.ai/v1"
 -         super().__init__(key, model_name, base_url, **kwargs)
 - 
 - 
 - class LiteLLMBase(ABC):
 -     _FACTORY_NAME = ["Tongyi-Qianwen", "Bedrock", "Moonshot", "xAI", "DeepInfra", "Groq", "Cohere", "Gemini", "DeepSeek", "NVIDIA", "TogetherAI", "Anthropic"]
 - 
 -     def __init__(self, key, model_name, base_url=None, **kwargs):
 -         self.timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600))
 -         self.provider = kwargs.get("provider", "")
 -         self.prefix = LITELLM_PROVIDER_PREFIX.get(self.provider, "")
 -         self.model_name = f"{self.prefix}{model_name}"
 -         self.api_key = key
 -         self.base_url = base_url or FACTORY_DEFAULT_BASE_URL.get(self.provider, "")
 -         # Configure retry parameters
 -         self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
 -         self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))
 -         self.max_rounds = kwargs.get("max_rounds", 5)
 -         self.is_tools = False
 -         self.tools = []
 -         self.toolcall_sessions = {}
 - 
 -         # Factory specific fields
 -         if self.provider == SupportedLiteLLMProvider.Bedrock:
 -             self.bedrock_ak = json.loads(key).get("bedrock_ak", "")
 -             self.bedrock_sk = json.loads(key).get("bedrock_sk", "")
 -             self.bedrock_region = json.loads(key).get("bedrock_region", "")
 - 
 -     def _get_delay(self):
 -         """Calculate retry delay time"""
 -         return self.base_delay * random.uniform(10, 150)
 - 
 -     def _classify_error(self, error):
 -         """Classify error based on error message content"""
 -         error_str = str(error).lower()
 - 
 -         keywords_mapping = [
 -             (["quota", "capacity", "credit", "billing", "balance", "欠费"], LLMErrorCode.ERROR_QUOTA),
 -             (["rate limit", "429", "tpm limit", "too many requests", "requests per minute"], LLMErrorCode.ERROR_RATE_LIMIT),
 -             (["auth", "key", "apikey", "401", "forbidden", "permission"], LLMErrorCode.ERROR_AUTHENTICATION),
 -             (["invalid", "bad request", "400", "format", "malformed", "parameter"], LLMErrorCode.ERROR_INVALID_REQUEST),
 -             (["server", "503", "502", "504", "500", "unavailable"], LLMErrorCode.ERROR_SERVER),
 -             (["timeout", "timed out"], LLMErrorCode.ERROR_TIMEOUT),
 -             (["connect", "network", "unreachable", "dns"], LLMErrorCode.ERROR_CONNECTION),
 -             (["filter", "content", "policy", "blocked", "safety", "inappropriate"], LLMErrorCode.ERROR_CONTENT_FILTER),
 -             (["model", "not found", "does not exist", "not available"], LLMErrorCode.ERROR_MODEL),
 -             (["max rounds"], LLMErrorCode.ERROR_MODEL),
 -         ]
 -         for words, code in keywords_mapping:
 -             if re.search("({})".format("|".join(words)), error_str):
 -                 return code
 - 
 -         return LLMErrorCode.ERROR_GENERIC
 - 
 -     def _clean_conf(self, gen_conf):
 -         if "max_tokens" in gen_conf:
 -             del gen_conf["max_tokens"]
 -         return gen_conf
 - 
 -     def _chat(self, history, gen_conf, **kwargs):
 -         logging.info("[HISTORY]" + json.dumps(history, ensure_ascii=False, indent=2))
 -         if self.model_name.lower().find("qwen3") >= 0:
 -             kwargs["extra_body"] = {"enable_thinking": False}
 - 
 -         completion_args = self._construct_completion_args(history=history, stream=False, tools=False, **gen_conf)
 -         response = litellm.completion(
 -             **completion_args,
 -             drop_params=True,
 -             timeout=self.timeout,
 -         )
 -         # response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf, **kwargs)
 - 
 -         if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]):
 -             return "", 0
 -         ans = response.choices[0].message.content.strip()
 -         if response.choices[0].finish_reason == "length":
 -             ans = self._length_stop(ans)
 - 
 -         return ans, self.total_token_count(response)
 - 
 -     def _chat_streamly(self, history, gen_conf, **kwargs):
 -         logging.info("[HISTORY STREAMLY]" + json.dumps(history, ensure_ascii=False, indent=4))
 -         reasoning_start = False
 - 
 -         completion_args = self._construct_completion_args(history=history, stream=True, tools=False, **gen_conf)
 -         stop = kwargs.get("stop")
 -         if stop:
 -             completion_args["stop"] = stop
 -         response = litellm.completion(
 -             **completion_args,
 -             drop_params=True,
 -             timeout=self.timeout,
 -         )
 - 
 -         for resp in response:
 -             if not hasattr(resp, "choices") or not resp.choices:
 -                 continue
 - 
 -             delta = resp.choices[0].delta
 -             if not hasattr(delta, "content") or delta.content is None:
 -                 delta.content = ""
 - 
 -             if kwargs.get("with_reasoning", True) and hasattr(delta, "reasoning_content") and delta.reasoning_content:
 -                 ans = ""
 -                 if not reasoning_start:
 -                     reasoning_start = True
 -                     ans = "<think>"
 -                 ans += delta.reasoning_content + "</think>"
 -             else:
 -                 reasoning_start = False
 -                 ans = delta.content
 - 
 -             tol = self.total_token_count(resp)
 -             if not tol:
 -                 tol = num_tokens_from_string(delta.content)
 - 
 -             finish_reason = resp.choices[0].finish_reason if hasattr(resp.choices[0], "finish_reason") else ""
 -             if finish_reason == "length":
 -                 if is_chinese(ans):
 -                     ans += LENGTH_NOTIFICATION_CN
 -                 else:
 -                     ans += LENGTH_NOTIFICATION_EN
 - 
 -             yield ans, tol
 - 
 -     def _length_stop(self, ans):
 -         if is_chinese([ans]):
 -             return ans + LENGTH_NOTIFICATION_CN
 -         return ans + LENGTH_NOTIFICATION_EN
 - 
 -     def _exceptions(self, e, attempt):
 -         logging.exception("OpenAI chat_with_tools")
 -         # Classify the error
 -         error_code = self._classify_error(e)
 -         if attempt == self.max_retries:
 -             error_code = LLMErrorCode.ERROR_MAX_RETRIES
 - 
 -         # Check if it's a rate limit error or server error and not the last attempt
 -         should_retry = error_code == LLMErrorCode.ERROR_RATE_LIMIT or error_code == LLMErrorCode.ERROR_SERVER
 -         if not should_retry:
 -             return f"{ERROR_PREFIX}: {error_code} - {str(e)}"
 - 
 -         delay = self._get_delay()
 -         logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})")
 -         time.sleep(delay)
 - 
 -     def _verbose_tool_use(self, name, args, res):
 -         return "<tool_call>" + json.dumps({"name": name, "args": args, "result": res}, ensure_ascii=False, indent=2) + "</tool_call>"
 - 
 -     def _append_history(self, hist, tool_call, tool_res):
 -         hist.append(
 -             {
 -                 "role": "assistant",
 -                 "tool_calls": [
 -                     {
 -                         "index": tool_call.index,
 -                         "id": tool_call.id,
 -                         "function": {
 -                             "name": tool_call.function.name,
 -                             "arguments": tool_call.function.arguments,
 -                         },
 -                         "type": "function",
 -                     },
 -                 ],
 -             }
 -         )
 -         try:
 -             if isinstance(tool_res, dict):
 -                 tool_res = json.dumps(tool_res, ensure_ascii=False)
 -         finally:
 -             hist.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_res)})
 -         return hist
 - 
 -     def bind_tools(self, toolcall_session, tools):
 -         if not (toolcall_session and tools):
 -             return
 -         self.is_tools = True
 -         self.toolcall_session = toolcall_session
 -         self.tools = tools
 - 
 -     def _construct_completion_args(self, history, stream: bool, tools: bool, **kwargs):
 -         completion_args = {
 -             "model": self.model_name,
 -             "messages": history,
 -             "api_key": self.api_key,
 -             **kwargs,
 -         }
 -         if stream:
 -             completion_args.update(
 -                 {
 -                     "stream": stream,
 -                 }
 -             )
 -         if tools and self.tools:
 -             completion_args.update(
 -                 {
 -                     "tools": self.tools,
 -                     "tool_choice": "auto",
 -                 }
 -             )
 -         if self.provider in FACTORY_DEFAULT_BASE_URL:
 -             completion_args.update({"api_base": self.base_url})
 -         elif self.provider == SupportedLiteLLMProvider.Bedrock:
 -             completion_args.pop("api_key", None)
 -             completion_args.pop("api_base", None)
 -             completion_args.update(
 -                 {
 -                     "aws_access_key_id": self.bedrock_ak,
 -                     "aws_secret_access_key": self.bedrock_sk,
 -                     "aws_region_name": self.bedrock_region,
 -                 }
 -             )
 -         return completion_args
 - 
 -     def chat_with_tools(self, system: str, history: list, gen_conf: dict = {}):
 -         gen_conf = self._clean_conf(gen_conf)
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 - 
 -         ans = ""
 -         tk_count = 0
 -         hist = deepcopy(history)
 - 
 -         # Implement exponential backoff retry strategy
 -         for attempt in range(self.max_retries + 1):
 -             history = deepcopy(hist)  # deepcopy is required here
 -             try:
 -                 for _ in range(self.max_rounds + 1):
 -                     logging.info(f"{self.tools=}")
 - 
 -                     completion_args = self._construct_completion_args(history=history, stream=False, tools=True, **gen_conf)
 -                     response = litellm.completion(
 -                         **completion_args,
 -                         drop_params=True,
 -                         timeout=self.timeout,
 -                     )
 - 
 -                     tk_count += self.total_token_count(response)
 - 
 -                     if not hasattr(response, "choices") or not response.choices or not response.choices[0].message:
 -                         raise Exception(f"500 response structure error. Response: {response}")
 - 
 -                     message = response.choices[0].message
 - 
 -                     if not hasattr(message, "tool_calls") or not message.tool_calls:
 -                         if hasattr(message, "reasoning_content") and message.reasoning_content:
 -                             ans += f"<think>{message.reasoning_content}</think>"
 -                         ans += message.content or ""
 -                         if response.choices[0].finish_reason == "length":
 -                             ans = self._length_stop(ans)
 -                         return ans, tk_count
 - 
 -                     for tool_call in message.tool_calls:
 -                         logging.info(f"Response {tool_call=}")
 -                         name = tool_call.function.name
 -                         try:
 -                             args = json_repair.loads(tool_call.function.arguments)
 -                             tool_response = self.toolcall_session.tool_call(name, args)
 -                             history = self._append_history(history, tool_call, tool_response)
 -                             ans += self._verbose_tool_use(name, args, tool_response)
 -                         except Exception as e:
 -                             logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
 -                             history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)})
 -                             ans += self._verbose_tool_use(name, {}, str(e))
 - 
 -                 logging.warning(f"Exceed max rounds: {self.max_rounds}")
 -                 history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"})
 - 
 -                 response, token_count = self._chat(history, gen_conf)
 -                 ans += response
 -                 tk_count += token_count
 -                 return ans, tk_count
 - 
 -             except Exception as e:
 -                 e = self._exceptions(e, attempt)
 -                 if e:
 -                     return e, tk_count
 - 
 -         assert False, "Shouldn't be here."
 - 
 -     def chat(self, system, history, gen_conf={}, **kwargs):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         gen_conf = self._clean_conf(gen_conf)
 - 
 -         # Implement exponential backoff retry strategy
 -         for attempt in range(self.max_retries + 1):
 -             try:
 -                 response = self._chat(history, gen_conf, **kwargs)
 -                 return response
 -             except Exception as e:
 -                 e = self._exceptions(e, attempt)
 -                 if e:
 -                     return e, 0
 -         assert False, "Shouldn't be here."
 - 
 -     def _wrap_toolcall_message(self, stream):
 -         final_tool_calls = {}
 - 
 -         for chunk in stream:
 -             for tool_call in chunk.choices[0].delta.tool_calls or []:
 -                 index = tool_call.index
 - 
 -                 if index not in final_tool_calls:
 -                     final_tool_calls[index] = tool_call
 - 
 -                 final_tool_calls[index].function.arguments += tool_call.function.arguments
 - 
 -         return final_tool_calls
 - 
 -     def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict = {}):
 -         gen_conf = self._clean_conf(gen_conf)
 -         tools = self.tools
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 - 
 -         total_tokens = 0
 -         hist = deepcopy(history)
 - 
 -         # Implement exponential backoff retry strategy
 -         for attempt in range(self.max_retries + 1):
 -             history = deepcopy(hist)  # deepcopy is required here
 -             try:
 -                 for _ in range(self.max_rounds + 1):
 -                     reasoning_start = False
 -                     logging.info(f"{tools=}")
 - 
 -                     completion_args = self._construct_completion_args(history=history, stream=True, tools=True, **gen_conf)
 -                     response = litellm.completion(
 -                         **completion_args,
 -                         drop_params=True,
 -                         timeout=self.timeout,
 -                     )
 - 
 -                     final_tool_calls = {}
 -                     answer = ""
 - 
 -                     for resp in response:
 -                         if not hasattr(resp, "choices") or not resp.choices:
 -                             continue
 - 
 -                         delta = resp.choices[0].delta
 - 
 -                         if hasattr(delta, "tool_calls") and delta.tool_calls:
 -                             for tool_call in delta.tool_calls:
 -                                 index = tool_call.index
 -                                 if index not in final_tool_calls:
 -                                     if not tool_call.function.arguments:
 -                                         tool_call.function.arguments = ""
 -                                     final_tool_calls[index] = tool_call
 -                                 else:
 -                                     final_tool_calls[index].function.arguments += tool_call.function.arguments or ""
 -                             continue
 - 
 -                         if not hasattr(delta, "content") or delta.content is None:
 -                             delta.content = ""
 - 
 -                         if hasattr(delta, "reasoning_content") and delta.reasoning_content:
 -                             ans = ""
 -                             if not reasoning_start:
 -                                 reasoning_start = True
 -                                 ans = "<think>"
 -                             ans += delta.reasoning_content + "</think>"
 -                             yield ans
 -                         else:
 -                             reasoning_start = False
 -                             answer += delta.content
 -                             yield delta.content
 - 
 -                         tol = self.total_token_count(resp)
 -                         if not tol:
 -                             total_tokens += num_tokens_from_string(delta.content)
 -                         else:
 -                             total_tokens += tol
 - 
 -                         finish_reason = getattr(resp.choices[0], "finish_reason", "")
 -                         if finish_reason == "length":
 -                             yield self._length_stop("")
 - 
 -                     if answer:
 -                         yield total_tokens
 -                         return
 - 
 -                     for tool_call in final_tool_calls.values():
 -                         name = tool_call.function.name
 -                         try:
 -                             args = json_repair.loads(tool_call.function.arguments)
 -                             yield self._verbose_tool_use(name, args, "Begin to call...")
 -                             tool_response = self.toolcall_session.tool_call(name, args)
 -                             history = self._append_history(history, tool_call, tool_response)
 -                             yield self._verbose_tool_use(name, args, tool_response)
 -                         except Exception as e:
 -                             logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
 -                             history.append(
 -                                 {
 -                                     "role": "tool",
 -                                     "tool_call_id": tool_call.id,
 -                                     "content": f"Tool call error: \n{tool_call}\nException:\n{str(e)}",
 -                                 }
 -                             )
 -                             yield self._verbose_tool_use(name, {}, str(e))
 - 
 -                 logging.warning(f"Exceed max rounds: {self.max_rounds}")
 -                 history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"})
 - 
 -                 completion_args = self._construct_completion_args(history=history, stream=True, tools=True, **gen_conf)
 -                 response = litellm.completion(
 -                     **completion_args,
 -                     drop_params=True,
 -                     timeout=self.timeout,
 -                 )
 - 
 -                 for resp in response:
 -                     if not hasattr(resp, "choices") or not resp.choices:
 -                         continue
 -                     delta = resp.choices[0].delta
 -                     if not hasattr(delta, "content") or delta.content is None:
 -                         continue
 -                     tol = self.total_token_count(resp)
 -                     if not tol:
 -                         total_tokens += num_tokens_from_string(delta.content)
 -                     else:
 -                         total_tokens += tol
 -                     yield delta.content
 - 
 -                 yield total_tokens
 -                 return
 - 
 -             except Exception as e:
 -                 e = self._exceptions(e, attempt)
 -                 if e:
 -                     yield e
 -                     yield total_tokens
 -                     return
 - 
 -         assert False, "Shouldn't be here."
 - 
 -     def chat_streamly(self, system, history, gen_conf: dict = {}, **kwargs):
 -         if system:
 -             history.insert(0, {"role": "system", "content": system})
 -         gen_conf = self._clean_conf(gen_conf)
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             for delta_ans, tol in self._chat_streamly(history, gen_conf, **kwargs):
 -                 yield delta_ans
 -                 total_tokens += tol
 -         except openai.APIError as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 -     def total_token_count(self, resp):
 -         try:
 -             return resp.usage.total_tokens
 -         except Exception:
 -             pass
 -         try:
 -             return resp["usage"]["total_tokens"]
 -         except Exception:
 -             pass
 -         return 0
 - 
 -     def _calculate_dynamic_ctx(self, history):
 -         """Calculate dynamic context window size"""
 - 
 -         def count_tokens(text):
 -             """Calculate token count for text"""
 -             # Simple calculation: 1 token per ASCII character
 -             # 2 tokens for non-ASCII characters (Chinese, Japanese, Korean, etc.)
 -             total = 0
 -             for char in text:
 -                 if ord(char) < 128:  # ASCII characters
 -                     total += 1
 -                 else:  # Non-ASCII characters (Chinese, Japanese, Korean, etc.)
 -                     total += 2
 -             return total
 - 
 -         # Calculate total tokens for all messages
 -         total_tokens = 0
 -         for message in history:
 -             content = message.get("content", "")
 -             # Calculate content tokens
 -             content_tokens = count_tokens(content)
 -             # Add role marker token overhead
 -             role_tokens = 4
 -             total_tokens += content_tokens + role_tokens
 - 
 -         # Apply 1.2x buffer ratio
 -         total_tokens_with_buffer = int(total_tokens * 1.2)
 - 
 -         if total_tokens_with_buffer <= 8192:
 -             ctx_size = 8192
 -         else:
 -             ctx_multiplier = (total_tokens_with_buffer // 8192) + 1
 -             ctx_size = ctx_multiplier * 8192
 - 
 -         return ctx_size
 
 
  |