Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

search.py 10KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
  1. # -*- coding: utf-8 -*-
  2. import json
  3. import re
  4. from elasticsearch_dsl import Q, Search, A
  5. from typing import List, Optional, Dict, Union
  6. from dataclasses import dataclass
  7. from rag.settings import es_logger
  8. from rag.utils import rmSpace
  9. from rag.nlp import huqie, query
  10. import numpy as np
  11. def index_name(uid): return f"ragflow_{uid}"
  12. class Dealer:
  13. def __init__(self, es):
  14. self.qryr = query.EsQueryer(es)
  15. self.qryr.flds = [
  16. "title_tks^10",
  17. "title_sm_tks^5",
  18. "important_kwd^30",
  19. "important_tks^20",
  20. "content_ltks^2",
  21. "content_sm_ltks"]
  22. self.es = es
  23. @dataclass
  24. class SearchResult:
  25. total: int
  26. ids: List[str]
  27. query_vector: List[float] = None
  28. field: Optional[Dict] = None
  29. highlight: Optional[Dict] = None
  30. aggregation: Union[List, Dict, None] = None
  31. keywords: Optional[List[str]] = None
  32. group_docs: List[List] = None
  33. def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
  34. qv, c = emb_mdl.encode_queries(txt)
  35. return {
  36. "field": "q_%d_vec" % len(qv),
  37. "k": topk,
  38. "similarity": sim,
  39. "num_candidates": topk * 2,
  40. "query_vector": qv
  41. }
  42. def search(self, req, idxnm, emb_mdl=None):
  43. qst = req.get("question", "")
  44. bqry, keywords = self.qryr.question(qst)
  45. if req.get("kb_ids"):
  46. bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
  47. if req.get("doc_ids"):
  48. bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
  49. if "available_int" in req:
  50. if req["available_int"] == 0:
  51. bqry.filter.append(Q("range", available_int={"lt": 1}))
  52. else:
  53. bqry.filter.append(Q("bool", must_not=Q("range", available_int={"lt": 1})))
  54. bqry.boost = 0.05
  55. s = Search()
  56. pg = int(req.get("page", 1)) - 1
  57. ps = int(req.get("size", 1000))
  58. src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id",
  59. "image_id", "doc_id", "q_512_vec", "q_768_vec",
  60. "q_1024_vec", "q_1536_vec", "available_int"])
  61. s = s.query(bqry)[pg * ps:(pg + 1) * ps]
  62. s = s.highlight("content_ltks")
  63. s = s.highlight("title_ltks")
  64. if not qst:
  65. s = s.sort(
  66. {"create_time": {"order": "desc", "unmapped_type": "date"}})
  67. if qst:
  68. s = s.highlight_options(
  69. fragment_size=120,
  70. number_of_fragments=5,
  71. boundary_scanner_locale="zh-CN",
  72. boundary_scanner="SENTENCE",
  73. boundary_chars=",./;:\\!(),。?:!……()——、"
  74. )
  75. s = s.to_dict()
  76. q_vec = []
  77. if req.get("vector"):
  78. assert emb_mdl, "No embedding model selected"
  79. s["knn"] = self._vector(qst, emb_mdl, req.get("similarity", 0.4), ps)
  80. s["knn"]["filter"] = bqry.to_dict()
  81. if "highlight" in s: del s["highlight"]
  82. q_vec = s["knn"]["query_vector"]
  83. es_logger.info("【Q】: {}".format(json.dumps(s)))
  84. res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
  85. es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
  86. if self.es.getTotal(res) == 0 and "knn" in s:
  87. bqry, _ = self.qryr.question(qst, min_match="10%")
  88. if req.get("kb_ids"):
  89. bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
  90. s["query"] = bqry.to_dict()
  91. s["knn"]["filter"] = bqry.to_dict()
  92. s["knn"]["similarity"] = 0.7
  93. res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
  94. kwds = set([])
  95. for k in keywords:
  96. kwds.add(k)
  97. for kk in huqie.qieqie(k).split(" "):
  98. if len(kk) < 2:
  99. continue
  100. if kk in kwds:
  101. continue
  102. kwds.add(kk)
  103. aggs = self.getAggregation(res, "docnm_kwd")
  104. return self.SearchResult(
  105. total=self.es.getTotal(res),
  106. ids=self.es.getDocIds(res),
  107. query_vector=q_vec,
  108. aggregation=aggs,
  109. highlight=self.getHighlight(res),
  110. field=self.getFields(res, src),
  111. keywords=list(kwds)
  112. )
  113. def getAggregation(self, res, g):
  114. if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
  115. return
  116. bkts = res["aggregations"]["aggs_" + g]["buckets"]
  117. return [(b["key"], b["doc_count"]) for b in bkts]
  118. def getHighlight(self, res):
  119. def rmspace(line):
  120. eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
  121. r = []
  122. for t in line.split(" "):
  123. if not t:
  124. continue
  125. if len(r) > 0 and len(
  126. t) > 0 and r[-1][-1] in eng and t[0] in eng:
  127. r.append(" ")
  128. r.append(t)
  129. r = "".join(r)
  130. return r
  131. ans = {}
  132. for d in res["hits"]["hits"]:
  133. hlts = d.get("highlight")
  134. if not hlts:
  135. continue
  136. ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
  137. return ans
  138. def getFields(self, sres, flds):
  139. res = {}
  140. if not flds:
  141. return {}
  142. for d in self.es.getSource(sres):
  143. m = {n: d.get(n) for n in flds if d.get(n) is not None}
  144. for n, v in m.items():
  145. if isinstance(v, type([])):
  146. m[n] = "\t".join([str(vv) for vv in v])
  147. continue
  148. if not isinstance(v, type("")):
  149. m[n] = str(m[n])
  150. m[n] = rmSpace(m[n])
  151. if m:
  152. res[d["id"]] = m
  153. return res
  154. @staticmethod
  155. def trans2floats(txt):
  156. return [float(t) for t in txt.split("\t")]
  157. def insert_citations(self, answer, chunks, chunk_v, embd_mdl, tkweight=0.3, vtweight=0.7):
  158. pieces = re.split(r"([;。?!!\n]|[a-z][.?;!][ \n])", answer)
  159. for i in range(1, len(pieces)):
  160. if re.match(r"[a-z][.?;!][ \n]", pieces[i]):
  161. pieces[i - 1] += pieces[i][0]
  162. pieces[i] = pieces[i][1:]
  163. idx = []
  164. pieces_ = []
  165. for i, t in enumerate(pieces):
  166. if len(t) < 5: continue
  167. idx.append(i)
  168. pieces_.append(t)
  169. if not pieces_: return answer
  170. ans_v = embd_mdl.encode(pieces_)
  171. assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
  172. len(ans_v[0]), len(chunk_v[0]))
  173. chunks_tks = [huqie.qie(ck).split(" ") for ck in chunks]
  174. cites = {}
  175. for i,a in enumerate(pieces_):
  176. sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
  177. chunk_v,
  178. huqie.qie(pieces_[i]).split(" "),
  179. chunks_tks,
  180. tkweight, vtweight)
  181. mx = np.max(sim) * 0.99
  182. if mx < 0.55: continue
  183. cites[idx[i]] = list(set([str(i) for i in range(len(chunk_v)) if sim[i] > mx]))[:4]
  184. res = ""
  185. for i,p in enumerate(pieces):
  186. res += p
  187. if i not in idx:continue
  188. if i not in cites:continue
  189. res += "##%s$$"%"$".join(cites[i])
  190. return res
  191. def rerank(self, sres, query, tkweight=0.3, vtweight=0.7, cfield="content_ltks"):
  192. ins_embd = [
  193. Dealer.trans2floats(
  194. sres.field[i]["q_%d_vec" % len(sres.query_vector)]) for i in sres.ids]
  195. if not ins_embd:
  196. return []
  197. ins_tw = [huqie.qie(sres.field[i][cfield]).split(" ") for i in sres.ids]
  198. sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
  199. ins_embd,
  200. huqie.qie(query).split(" "),
  201. ins_tw, tkweight, vtweight)
  202. return sim, tksim, vtsim
  203. def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
  204. return self.qryr.hybrid_similarity(ans_embd,
  205. ins_embd,
  206. huqie.qie(ans).split(" "),
  207. huqie.qie(inst).split(" "))
  208. def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
  209. vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
  210. req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
  211. "question": question, "vector": True,
  212. "similarity": similarity_threshold}
  213. sres = self.search(req, index_name(tenant_id), embd_mdl)
  214. sim, tsim, vsim = self.rerank(
  215. sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
  216. idx = np.argsort(sim * -1)
  217. ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
  218. dim = len(sres.query_vector)
  219. start_idx = (page - 1) * page_size
  220. for i in idx:
  221. ranks["total"] += 1
  222. if sim[i] < similarity_threshold:
  223. break
  224. start_idx -= 1
  225. if start_idx >= 0:
  226. continue
  227. if len(ranks["chunks"]) == page_size:
  228. if aggs:
  229. continue
  230. break
  231. id = sres.ids[i]
  232. dnm = sres.field[id]["docnm_kwd"]
  233. d = {
  234. "chunk_id": id,
  235. "content_ltks": sres.field[id]["content_ltks"],
  236. "doc_id": sres.field[id]["doc_id"],
  237. "docnm_kwd": dnm,
  238. "kb_id": sres.field[id]["kb_id"],
  239. "important_kwd": sres.field[id].get("important_kwd", []),
  240. "img_id": sres.field[id].get("img_id", ""),
  241. "similarity": sim[i],
  242. "vector_similarity": vsim[i],
  243. "term_similarity": tsim[i],
  244. "vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim)))
  245. }
  246. ranks["chunks"].append(d)
  247. if dnm not in ranks["doc_aggs"]:
  248. ranks["doc_aggs"][dnm] = 0
  249. ranks["doc_aggs"][dnm] += 1
  250. return ranks