| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import json
- import logging
- from abc import ABC
-
- import pandas as pd
-
- from api.db import LLMType
- from api.db.services.knowledgebase_service import KnowledgebaseService
- from api.db.services.llm_service import LLMBundle
- from api import settings
- from agent.component.base import ComponentBase, ComponentParamBase
- from rag.app.tag import label_question
- from rag.prompts import kb_prompt
- from rag.utils.tavily_conn import Tavily
-
-
- class RetrievalParam(ComponentParamBase):
-
- """
- Define the Retrieval component parameters.
- """
- def __init__(self):
- super().__init__()
- self.similarity_threshold = 0.2
- self.keywords_similarity_weight = 0.5
- self.top_n = 8
- self.top_k = 1024
- self.kb_ids = []
- self.rerank_id = ""
- self.empty_response = ""
- self.tavily_api_key = ""
- self.use_kg = False
-
- def check(self):
- self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
- self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keyword similarity weight")
- self.check_positive_number(self.top_n, "[Retrieval] Top N")
-
-
- class Retrieval(ComponentBase, ABC):
- component_name = "Retrieval"
-
- def _run(self, history, **kwargs):
- query = self.get_input()
- query = str(query["content"][0]) if "content" in query else ""
- kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
- if not kbs:
- return Retrieval.be_output("")
-
- embd_nms = list(set([kb.embd_id for kb in kbs]))
- assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
-
- embd_mdl = None
- if embd_nms:
- embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
- self._canvas.set_embedding_model(embd_nms[0])
-
- rerank_mdl = None
- if self._param.rerank_id:
- rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
-
- if kbs:
- kbinfos = settings.retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
- 1, self._param.top_n,
- self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
- aggs=False, rerank_mdl=rerank_mdl,
- rank_feature=label_question(query, kbs))
- else:
- kbinfos = {"chunks": [], "doc_aggs": []}
-
- if self._param.use_kg and kbs:
- ck = settings.kg_retrievaler.retrieval(query,
- [kbs[0].tenant_id],
- self._param.kb_ids,
- embd_mdl,
- LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
- if ck["content_with_weight"]:
- kbinfos["chunks"].insert(0, ck)
-
- if self._param.tavily_api_key:
- tav = Tavily(self._param.tavily_api_key)
- tav_res = tav.retrieve_chunks(query)
- kbinfos["chunks"].extend(tav_res["chunks"])
- kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
-
- if not kbinfos["chunks"]:
- df = Retrieval.be_output("")
- if self._param.empty_response and self._param.empty_response.strip():
- df["empty_response"] = self._param.empty_response
- return df
-
- df = pd.DataFrame({"content": kb_prompt(kbinfos, 200000), "chunks": json.dumps(kbinfos["chunks"])})
- logging.debug("{} {}".format(query, df))
- return df.dropna()
-
|