| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - from typing import Optional
 - 
 - from huggingface_hub import snapshot_download
 - from zhipuai import ZhipuAI
 - import os
 - from abc import ABC
 - from ollama import Client
 - import dashscope
 - from openai import OpenAI
 - from FlagEmbedding import FlagModel
 - import torch
 - import numpy as np
 - 
 - from api.utils.file_utils import get_project_base_directory, get_home_cache_dir
 - from rag.utils import num_tokens_from_string
 - 
 - 
 - try:
 -     flag_model = FlagModel(os.path.join(get_home_cache_dir(), "bge-large-zh-v1.5"),
 -         query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
 -         use_fp16=torch.cuda.is_available())
 - except Exception as e:
 -     model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
 -                                   local_dir=os.path.join(get_home_cache_dir(), "bge-large-zh-v1.5"),
 -                                   local_dir_use_symlinks=False)
 -     flag_model = FlagModel(model_dir,
 -                            query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
 -                            use_fp16=torch.cuda.is_available())
 - 
 - 
 - class Base(ABC):
 -     def __init__(self, key, model_name):
 -         pass
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         raise NotImplementedError("Please implement encode method!")
 - 
 -     def encode_queries(self, text: str):
 -         raise NotImplementedError("Please implement encode method!")
 - 
 - 
 - class DefaultEmbedding(Base):
 -     def __init__(self, *args, **kwargs):
 -         """
 -         If you have trouble downloading HuggingFace models, -_^ this might help!!
 - 
 -         For Linux:
 -         export HF_ENDPOINT=https://hf-mirror.com
 - 
 -         For Windows:
 -         Good luck
 -         ^_-
 - 
 -         """
 -         self.model = flag_model
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         texts = [t[:2000] for t in texts]
 -         token_count = 0
 -         for t in texts:
 -             token_count += num_tokens_from_string(t)
 -         res = []
 -         for i in range(0, len(texts), batch_size):
 -             res.extend(self.model.encode(texts[i:i + batch_size]).tolist())
 -         return np.array(res), token_count
 - 
 -     def encode_queries(self, text: str):
 -         token_count = num_tokens_from_string(text)
 -         return self.model.encode_queries([text]).tolist()[0], token_count
 - 
 - 
 - class OpenAIEmbed(Base):
 -     def __init__(self, key, model_name="text-embedding-ada-002",
 -                  base_url="https://api.openai.com/v1"):
 -         if not base_url:
 -             base_url = "https://api.openai.com/v1"
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         res = self.client.embeddings.create(input=texts,
 -                                             model=self.model_name)
 -         return np.array([d.embedding for d in res.data]), res.usage.total_tokens
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embeddings.create(input=[text],
 -                                             model=self.model_name)
 -         return np.array(res.data[0].embedding), res.usage.total_tokens
 - 
 - 
 - class QWenEmbed(Base):
 -     def __init__(self, key, model_name="text_embedding_v2", **kwargs):
 -         dashscope.api_key = key
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=10):
 -         import dashscope
 -         res = []
 -         token_count = 0
 -         texts = [txt[:2048] for txt in texts]
 -         for i in range(0, len(texts), batch_size):
 -             resp = dashscope.TextEmbedding.call(
 -                 model=self.model_name,
 -                 input=texts[i:i + batch_size],
 -                 text_type="document"
 -             )
 -             embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
 -             for e in resp["output"]["embeddings"]:
 -                 embds[e["text_index"]] = e["embedding"]
 -             res.extend(embds)
 -             token_count += resp["usage"]["total_tokens"]
 -         return np.array(res), token_count
 - 
 -     def encode_queries(self, text):
 -         resp = dashscope.TextEmbedding.call(
 -             model=self.model_name,
 -             input=text[:2048],
 -             text_type="query"
 -         )
 -         return np.array(resp["output"]["embeddings"][0]
 -                         ["embedding"]), resp["usage"]["total_tokens"]
 - 
 - 
 - class ZhipuEmbed(Base):
 -     def __init__(self, key, model_name="embedding-2", **kwargs):
 -         self.client = ZhipuAI(api_key=key)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         arr = []
 -         tks_num = 0
 -         for txt in texts:
 -             res = self.client.embeddings.create(input=txt,
 -                                                 model=self.model_name)
 -             arr.append(res.data[0].embedding)
 -             tks_num += res.usage.total_tokens
 -         return np.array(arr), tks_num
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embeddings.create(input=text,
 -                                             model=self.model_name)
 -         return np.array(res.data[0].embedding), res.usage.total_tokens
 - 
 - 
 - class OllamaEmbed(Base):
 -     def __init__(self, key, model_name, **kwargs):
 -         self.client = Client(host=kwargs["base_url"])
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         arr = []
 -         tks_num = 0
 -         for txt in texts:
 -             res = self.client.embeddings(prompt=txt,
 -                                          model=self.model_name)
 -             arr.append(res["embedding"])
 -             tks_num += 128
 -         return np.array(arr), tks_num
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embeddings(prompt=text,
 -                                      model=self.model_name)
 -         return np.array(res["embedding"]), 128
 - 
 - 
 - class FastEmbed(Base):
 -     def __init__(
 -         self,
 -         key: Optional[str] = None,
 -         model_name: str = "BAAI/bge-small-en-v1.5",
 -         cache_dir: Optional[str] = None,
 -         threads: Optional[int] = None,
 -         **kwargs,
 -     ):
 -         from fastembed import TextEmbedding
 -         self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         # Using the internal tokenizer to encode the texts and get the total
 -         # number of tokens
 -         encodings = self._model.model.tokenizer.encode_batch(texts)
 -         total_tokens = sum(len(e) for e in encodings)
 - 
 -         embeddings = [e.tolist() for e in self._model.embed(texts, batch_size)]
 - 
 -         return np.array(embeddings), total_tokens
 - 
 -     def encode_queries(self, text: str):
 -         # Using the internal tokenizer to encode the texts and get the total
 -         # number of tokens
 -         encoding = self._model.model.tokenizer.encode(text)
 -         embedding = next(self._model.query_embed(text)).tolist()
 - 
 -         return np.array(embedding), len(encoding.ids)
 - 
 - 
 - class XinferenceEmbed(Base):
 -     def __init__(self, key, model_name="", base_url=""):
 -         self.client = OpenAI(api_key="xxx", base_url=base_url)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         res = self.client.embeddings.create(input=texts,
 -                                             model=self.model_name)
 -         return np.array([d.embedding for d in res.data]
 -                         ), res.usage.total_tokens
 - 
 -     def encode_queries(self, text):
 -         res = self.client.embeddings.create(input=[text],
 -                                             model=self.model_name)
 -         return np.array(res.data[0].embedding), res.usage.total_tokens
 - 
 - 
 - class YoudaoEmbed(Base):
 -     _client = None
 - 
 -     def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
 -         from BCEmbedding import EmbeddingModel as qanthing
 -         if not YoudaoEmbed._client:
 -             try:
 -                 print("LOADING BCE...")
 -                 YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
 -                     get_home_cache_dir(),
 -                     "bce-embedding-base_v1"))
 -             except Exception as e:
 -                 YoudaoEmbed._client = qanthing(
 -                     model_name_or_path=model_name.replace(
 -                         "maidalun1020", "InfiniFlow"))
 - 
 -     def encode(self, texts: list, batch_size=10):
 -         res = []
 -         token_count = 0
 -         for t in texts:
 -             token_count += num_tokens_from_string(t)
 -         for i in range(0, len(texts), batch_size):
 -             embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
 -             res.extend(embds)
 -         return np.array(res), token_count
 - 
 -     def encode_queries(self, text):
 -         embds = YoudaoEmbed._client.encode([text])
 -         return np.array(embds[0]), num_tokens_from_string(text)
 
 
  |