Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

llm_app.py 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. import json
  18. import base64
  19. from flask import request
  20. from flask_login import login_required, current_user
  21. from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
  22. from api import settings
  23. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  24. from api.db import StatusEnum, LLMType
  25. from api.db.db_models import TenantLLM
  26. from api.utils.api_utils import get_json_result
  27. from api.utils.base64_image import test_image_base64
  28. from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
  29. @manager.route('/factories', methods=['GET']) # noqa: F821
  30. @login_required
  31. def factories():
  32. try:
  33. fac = LLMFactoriesService.get_all()
  34. fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
  35. llms = LLMService.get_all()
  36. mdl_types = {}
  37. for m in llms:
  38. if m.status != StatusEnum.VALID.value:
  39. continue
  40. if m.fid not in mdl_types:
  41. mdl_types[m.fid] = set([])
  42. mdl_types[m.fid].add(m.model_type)
  43. for f in fac:
  44. f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK,
  45. LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
  46. return get_json_result(data=fac)
  47. except Exception as e:
  48. return server_error_response(e)
  49. @manager.route('/set_api_key', methods=['POST']) # noqa: F821
  50. @login_required
  51. @validate_request("llm_factory", "api_key")
  52. def set_api_key():
  53. req = request.json
  54. # test if api key works
  55. chat_passed, embd_passed, rerank_passed = False, False, False
  56. factory = req["llm_factory"]
  57. msg = ""
  58. for llm in LLMService.query(fid=factory):
  59. if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
  60. assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
  61. mdl = EmbeddingModel[factory](
  62. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  63. try:
  64. arr, tc = mdl.encode(["Test if the api key is available"])
  65. if len(arr[0]) == 0:
  66. raise Exception("Fail")
  67. embd_passed = True
  68. except Exception as e:
  69. msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
  70. elif not chat_passed and llm.model_type == LLMType.CHAT.value:
  71. assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
  72. mdl = ChatModel[factory](
  73. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  74. try:
  75. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
  76. {"temperature": 0.9, 'max_tokens': 50})
  77. if m.find("**ERROR**") >= 0:
  78. raise Exception(m)
  79. chat_passed = True
  80. except Exception as e:
  81. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  82. e)
  83. elif not rerank_passed and llm.model_type == LLMType.RERANK:
  84. assert factory in RerankModel, f"Re-rank model from {factory} is not supported yet."
  85. mdl = RerankModel[factory](
  86. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  87. try:
  88. arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
  89. if len(arr) == 0 or tc == 0:
  90. raise Exception("Fail")
  91. rerank_passed = True
  92. logging.debug(f'passed model rerank {llm.llm_name}')
  93. except Exception as e:
  94. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  95. e)
  96. if any([embd_passed, chat_passed, rerank_passed]):
  97. msg = ''
  98. break
  99. if msg:
  100. return get_data_error_result(message=msg)
  101. llm_config = {
  102. "api_key": req["api_key"],
  103. "api_base": req.get("base_url", "")
  104. }
  105. for n in ["model_type", "llm_name"]:
  106. if n in req:
  107. llm_config[n] = req[n]
  108. for llm in LLMService.query(fid=factory):
  109. llm_config["max_tokens"]=llm.max_tokens
  110. if not TenantLLMService.filter_update(
  111. [TenantLLM.tenant_id == current_user.id,
  112. TenantLLM.llm_factory == factory,
  113. TenantLLM.llm_name == llm.llm_name],
  114. llm_config):
  115. TenantLLMService.save(
  116. tenant_id=current_user.id,
  117. llm_factory=factory,
  118. llm_name=llm.llm_name,
  119. model_type=llm.model_type,
  120. api_key=llm_config["api_key"],
  121. api_base=llm_config["api_base"],
  122. max_tokens=llm_config["max_tokens"]
  123. )
  124. return get_json_result(data=True)
  125. @manager.route('/add_llm', methods=['POST']) # noqa: F821
  126. @login_required
  127. @validate_request("llm_factory")
  128. def add_llm():
  129. req = request.json
  130. factory = req["llm_factory"]
  131. api_key = req.get("api_key", "x")
  132. llm_name = req.get("llm_name")
  133. def apikey_json(keys):
  134. nonlocal req
  135. return json.dumps({k: req.get(k, "") for k in keys})
  136. if factory == "VolcEngine":
  137. # For VolcEngine, due to its special authentication method
  138. # Assemble ark_api_key endpoint_id into api_key
  139. api_key = apikey_json(["ark_api_key", "endpoint_id"])
  140. elif factory == "Tencent Hunyuan":
  141. req["api_key"] = apikey_json(["hunyuan_sid", "hunyuan_sk"])
  142. return set_api_key()
  143. elif factory == "Tencent Cloud":
  144. req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
  145. return set_api_key()
  146. elif factory == "Bedrock":
  147. # For Bedrock, due to its special authentication method
  148. # Assemble bedrock_ak, bedrock_sk, bedrock_region
  149. api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
  150. elif factory == "LocalAI":
  151. llm_name += "___LocalAI"
  152. elif factory == "HuggingFace":
  153. llm_name += "___HuggingFace"
  154. elif factory == "OpenAI-API-Compatible":
  155. llm_name += "___OpenAI-API"
  156. elif factory == "VLLM":
  157. llm_name += "___VLLM"
  158. elif factory == "XunFei Spark":
  159. if req["model_type"] == "chat":
  160. api_key = req.get("spark_api_password", "")
  161. elif req["model_type"] == "tts":
  162. api_key = apikey_json(["spark_app_id", "spark_api_secret", "spark_api_key"])
  163. elif factory == "BaiduYiyan":
  164. api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
  165. elif factory == "Fish Audio":
  166. api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
  167. elif factory == "Google Cloud":
  168. api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
  169. elif factory == "Azure-OpenAI":
  170. api_key = apikey_json(["api_key", "api_version"])
  171. llm = {
  172. "tenant_id": current_user.id,
  173. "llm_factory": factory,
  174. "model_type": req["model_type"],
  175. "llm_name": llm_name,
  176. "api_base": req.get("api_base", ""),
  177. "api_key": api_key,
  178. "max_tokens": req.get("max_tokens")
  179. }
  180. msg = ""
  181. mdl_nm = llm["llm_name"].split("___")[0]
  182. if llm["model_type"] == LLMType.EMBEDDING.value:
  183. assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
  184. mdl = EmbeddingModel[factory](
  185. key=llm['api_key'],
  186. model_name=mdl_nm,
  187. base_url=llm["api_base"])
  188. try:
  189. arr, tc = mdl.encode(["Test if the api key is available"])
  190. if len(arr[0]) == 0:
  191. raise Exception("Fail")
  192. except Exception as e:
  193. msg += f"\nFail to access embedding model({mdl_nm})." + str(e)
  194. elif llm["model_type"] == LLMType.CHAT.value:
  195. assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
  196. mdl = ChatModel[factory](
  197. key=llm['api_key'],
  198. model_name=mdl_nm,
  199. base_url=llm["api_base"]
  200. )
  201. try:
  202. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
  203. "temperature": 0.9})
  204. if not tc and m.find("**ERROR**:") >= 0:
  205. raise Exception(m)
  206. except Exception as e:
  207. msg += f"\nFail to access model({mdl_nm})." + str(
  208. e)
  209. elif llm["model_type"] == LLMType.RERANK:
  210. assert factory in RerankModel, f"RE-rank model from {factory} is not supported yet."
  211. try:
  212. mdl = RerankModel[factory](
  213. key=llm["api_key"],
  214. model_name=mdl_nm,
  215. base_url=llm["api_base"]
  216. )
  217. arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"])
  218. if len(arr) == 0:
  219. raise Exception("Not known.")
  220. except KeyError:
  221. msg += f"{factory} dose not support this model({mdl_nm})"
  222. except Exception as e:
  223. msg += f"\nFail to access model({mdl_nm})." + str(
  224. e)
  225. elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
  226. assert factory in CvModel, f"Image to text model from {factory} is not supported yet."
  227. mdl = CvModel[factory](
  228. key=llm["api_key"],
  229. model_name=mdl_nm,
  230. base_url=llm["api_base"]
  231. )
  232. try:
  233. image_data = base64.b64decode(test_image_base64)
  234. m, tc = mdl.describe(image_data)
  235. if not m and not tc:
  236. raise Exception(m)
  237. except Exception as e:
  238. msg += f"\nFail to access model({mdl_nm})." + str(e)
  239. elif llm["model_type"] == LLMType.TTS:
  240. assert factory in TTSModel, f"TTS model from {factory} is not supported yet."
  241. mdl = TTSModel[factory](
  242. key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
  243. )
  244. try:
  245. for resp in mdl.tts("Hello~ Ragflower!"):
  246. pass
  247. except RuntimeError as e:
  248. msg += f"\nFail to access model({mdl_nm})." + str(e)
  249. else:
  250. # TODO: check other type of models
  251. pass
  252. if msg:
  253. return get_data_error_result(message=msg)
  254. if not TenantLLMService.filter_update(
  255. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory,
  256. TenantLLM.llm_name == llm["llm_name"]], llm):
  257. TenantLLMService.save(**llm)
  258. return get_json_result(data=True)
  259. @manager.route('/delete_llm', methods=['POST']) # noqa: F821
  260. @login_required
  261. @validate_request("llm_factory", "llm_name")
  262. def delete_llm():
  263. req = request.json
  264. TenantLLMService.filter_delete(
  265. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"],
  266. TenantLLM.llm_name == req["llm_name"]])
  267. return get_json_result(data=True)
  268. @manager.route('/delete_factory', methods=['POST']) # noqa: F821
  269. @login_required
  270. @validate_request("llm_factory")
  271. def delete_factory():
  272. req = request.json
  273. TenantLLMService.filter_delete(
  274. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
  275. return get_json_result(data=True)
  276. @manager.route('/my_llms', methods=['GET']) # noqa: F821
  277. @login_required
  278. def my_llms():
  279. try:
  280. include_details = request.args.get('include_details', 'false').lower() == 'true'
  281. if include_details:
  282. res = {}
  283. objs = TenantLLMService.query(tenant_id=current_user.id)
  284. factories = LLMFactoriesService.query(status=StatusEnum.VALID.value)
  285. for o in objs:
  286. o_dict = o.to_dict()
  287. factory_tags = None
  288. for f in factories:
  289. if f.name == o_dict["llm_factory"]:
  290. factory_tags = f.tags
  291. break
  292. if o_dict["llm_factory"] not in res:
  293. res[o_dict["llm_factory"]] = {
  294. "tags": factory_tags,
  295. "llm": []
  296. }
  297. res[o_dict["llm_factory"]]["llm"].append({
  298. "type": o_dict["model_type"],
  299. "name": o_dict["llm_name"],
  300. "used_token": o_dict["used_tokens"],
  301. "api_base": o_dict["api_base"] or "",
  302. "max_tokens": o_dict["max_tokens"] or 8192
  303. })
  304. else:
  305. res = {}
  306. for o in TenantLLMService.get_my_llms(current_user.id):
  307. if o["llm_factory"] not in res:
  308. res[o["llm_factory"]] = {
  309. "tags": o["tags"],
  310. "llm": []
  311. }
  312. res[o["llm_factory"]]["llm"].append({
  313. "type": o["model_type"],
  314. "name": o["llm_name"],
  315. "used_token": o["used_tokens"]
  316. })
  317. return get_json_result(data=res)
  318. except Exception as e:
  319. return server_error_response(e)
  320. @manager.route('/list', methods=['GET']) # noqa: F821
  321. @login_required
  322. def list_app():
  323. self_deployed = ["Youdao", "FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio", "GPUStack"]
  324. weighted = ["Youdao", "FastEmbed", "BAAI"] if settings.LIGHTEN != 0 else []
  325. model_type = request.args.get("model_type")
  326. try:
  327. objs = TenantLLMService.query(tenant_id=current_user.id)
  328. facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
  329. llms = LLMService.get_all()
  330. llms = [m.to_dict()
  331. for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted]
  332. for m in llms:
  333. m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deployed
  334. llm_set = set([m["llm_name"] + "@" + m["fid"] for m in llms])
  335. for o in objs:
  336. if o.llm_name + "@" + o.llm_factory in llm_set:
  337. continue
  338. llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
  339. res = {}
  340. for m in llms:
  341. if model_type and m["model_type"].find(model_type) < 0:
  342. continue
  343. if m["fid"] not in res:
  344. res[m["fid"]] = []
  345. res[m["fid"]].append(m)
  346. return get_json_result(data=res)
  347. except Exception as e:
  348. return server_error_response(e)