選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

search.py 12KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326
  1. # -*- coding: utf-8 -*-
  2. import json
  3. import re
  4. from elasticsearch_dsl import Q, Search
  5. from typing import List, Optional, Dict, Union
  6. from dataclasses import dataclass
  7. from rag.settings import es_logger
  8. from rag.utils import rmSpace
  9. from rag.nlp import huqie, query
  10. import numpy as np
  11. def index_name(uid): return f"ragflow_{uid}"
  12. class Dealer:
  13. def __init__(self, es):
  14. self.qryr = query.EsQueryer(es)
  15. self.qryr.flds = [
  16. "title_tks^10",
  17. "title_sm_tks^5",
  18. "important_kwd^30",
  19. "important_tks^20",
  20. "content_ltks^2",
  21. "content_sm_ltks"]
  22. self.es = es
  23. @dataclass
  24. class SearchResult:
  25. total: int
  26. ids: List[str]
  27. query_vector: List[float] = None
  28. field: Optional[Dict] = None
  29. highlight: Optional[Dict] = None
  30. aggregation: Union[List, Dict, None] = None
  31. keywords: Optional[List[str]] = None
  32. group_docs: List[List] = None
  33. def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
  34. qv, c = emb_mdl.encode_queries(txt)
  35. return {
  36. "field": "q_%d_vec" % len(qv),
  37. "k": topk,
  38. "similarity": sim,
  39. "num_candidates": topk * 2,
  40. "query_vector": qv
  41. }
  42. def search(self, req, idxnm, emb_mdl=None):
  43. qst = req.get("question", "")
  44. bqry, keywords = self.qryr.question(qst)
  45. if req.get("kb_ids"):
  46. bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
  47. if req.get("doc_ids"):
  48. bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
  49. if "available_int" in req:
  50. if req["available_int"] == 0:
  51. bqry.filter.append(Q("range", available_int={"lt": 1}))
  52. else:
  53. bqry.filter.append(
  54. Q("bool", must_not=Q("range", available_int={"lt": 1})))
  55. bqry.boost = 0.05
  56. s = Search()
  57. pg = int(req.get("page", 1)) - 1
  58. ps = int(req.get("size", 1000))
  59. src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id",
  60. "image_id", "doc_id", "q_512_vec", "q_768_vec",
  61. "q_1024_vec", "q_1536_vec", "available_int", "content_with_weight"])
  62. s = s.query(bqry)[pg * ps:(pg + 1) * ps]
  63. s = s.highlight("content_ltks")
  64. s = s.highlight("title_ltks")
  65. if not qst:
  66. s = s.sort(
  67. {"create_time": {"order": "desc", "unmapped_type": "date"}},
  68. {"create_timestamp_flt": {"order": "desc", "unmapped_type": "float"}}
  69. )
  70. if qst:
  71. s = s.highlight_options(
  72. fragment_size=120,
  73. number_of_fragments=5,
  74. boundary_scanner_locale="zh-CN",
  75. boundary_scanner="SENTENCE",
  76. boundary_chars=",./;:\\!(),。?:!……()——、"
  77. )
  78. s = s.to_dict()
  79. q_vec = []
  80. if req.get("vector"):
  81. assert emb_mdl, "No embedding model selected"
  82. s["knn"] = self._vector(
  83. qst, emb_mdl, req.get(
  84. "similarity", 0.1), ps)
  85. s["knn"]["filter"] = bqry.to_dict()
  86. if "highlight" in s:
  87. del s["highlight"]
  88. q_vec = s["knn"]["query_vector"]
  89. es_logger.info("【Q】: {}".format(json.dumps(s)))
  90. res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
  91. es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
  92. if self.es.getTotal(res) == 0 and "knn" in s:
  93. bqry, _ = self.qryr.question(qst, min_match="10%")
  94. if req.get("kb_ids"):
  95. bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
  96. s["query"] = bqry.to_dict()
  97. s["knn"]["filter"] = bqry.to_dict()
  98. s["knn"]["similarity"] = 0.17
  99. res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
  100. kwds = set([])
  101. for k in keywords:
  102. kwds.add(k)
  103. for kk in huqie.qieqie(k).split(" "):
  104. if len(kk) < 2:
  105. continue
  106. if kk in kwds:
  107. continue
  108. kwds.add(kk)
  109. aggs = self.getAggregation(res, "docnm_kwd")
  110. return self.SearchResult(
  111. total=self.es.getTotal(res),
  112. ids=self.es.getDocIds(res),
  113. query_vector=q_vec,
  114. aggregation=aggs,
  115. highlight=self.getHighlight(res),
  116. field=self.getFields(res, src),
  117. keywords=list(kwds)
  118. )
  119. def getAggregation(self, res, g):
  120. if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
  121. return
  122. bkts = res["aggregations"]["aggs_" + g]["buckets"]
  123. return [(b["key"], b["doc_count"]) for b in bkts]
  124. def getHighlight(self, res):
  125. def rmspace(line):
  126. eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
  127. r = []
  128. for t in line.split(" "):
  129. if not t:
  130. continue
  131. if len(r) > 0 and len(
  132. t) > 0 and r[-1][-1] in eng and t[0] in eng:
  133. r.append(" ")
  134. r.append(t)
  135. r = "".join(r)
  136. return r
  137. ans = {}
  138. for d in res["hits"]["hits"]:
  139. hlts = d.get("highlight")
  140. if not hlts:
  141. continue
  142. ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
  143. return ans
  144. def getFields(self, sres, flds):
  145. res = {}
  146. if not flds:
  147. return {}
  148. for d in self.es.getSource(sres):
  149. m = {n: d.get(n) for n in flds if d.get(n) is not None}
  150. for n, v in m.items():
  151. if isinstance(v, type([])):
  152. m[n] = "\t".join([str(vv) for vv in v])
  153. continue
  154. if not isinstance(v, type("")):
  155. m[n] = str(m[n])
  156. if n.find("tks")>0: m[n] = rmSpace(m[n])
  157. if m:
  158. res[d["id"]] = m
  159. return res
  160. @staticmethod
  161. def trans2floats(txt):
  162. return [float(t) for t in txt.split("\t")]
  163. def insert_citations(self, answer, chunks, chunk_v,
  164. embd_mdl, tkweight=0.3, vtweight=0.7):
  165. assert len(chunks) == len(chunk_v)
  166. pieces = re.split(r"([;。?!!\n]|[a-z][.?;!][ \n])", answer)
  167. for i in range(1, len(pieces)):
  168. if re.match(r"[a-z][.?;!][ \n]", pieces[i]):
  169. pieces[i - 1] += pieces[i][0]
  170. pieces[i] = pieces[i][1:]
  171. idx = []
  172. pieces_ = []
  173. for i, t in enumerate(pieces):
  174. if len(t) < 5:
  175. continue
  176. idx.append(i)
  177. pieces_.append(t)
  178. es_logger.info("{} => {}".format(answer, pieces_))
  179. if not pieces_:
  180. return answer
  181. ans_v, _ = embd_mdl.encode(pieces_)
  182. assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
  183. len(ans_v[0]), len(chunk_v[0]))
  184. chunks_tks = [huqie.qie(ck).split(" ") for ck in chunks]
  185. cites = {}
  186. for i, a in enumerate(pieces_):
  187. sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
  188. chunk_v,
  189. huqie.qie(
  190. pieces_[i]).split(" "),
  191. chunks_tks,
  192. tkweight, vtweight)
  193. mx = np.max(sim) * 0.99
  194. if mx < 0.55:
  195. continue
  196. cites[idx[i]] = list(
  197. set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
  198. res = ""
  199. for i, p in enumerate(pieces):
  200. res += p
  201. if i not in idx:
  202. continue
  203. if i not in cites:
  204. continue
  205. assert int(cites[i]) < len(chunk_v)
  206. res += "##%s$$" % "$".join(cites[i])
  207. return res
  208. def rerank(self, sres, query, tkweight=0.3,
  209. vtweight=0.7, cfield="content_ltks"):
  210. ins_embd = [
  211. Dealer.trans2floats(
  212. sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
  213. if not ins_embd:
  214. return [], [], []
  215. ins_tw = [sres.field[i][cfield].split(" ")
  216. for i in sres.ids]
  217. sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
  218. ins_embd,
  219. huqie.qie(
  220. query).split(" "),
  221. ins_tw, tkweight, vtweight)
  222. return sim, tksim, vtsim
  223. def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
  224. return self.qryr.hybrid_similarity(ans_embd,
  225. ins_embd,
  226. huqie.qie(ans).split(" "),
  227. huqie.qie(inst).split(" "))
  228. def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
  229. vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
  230. ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
  231. if not question:
  232. return ranks
  233. req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
  234. "question": question, "vector": True,
  235. "similarity": similarity_threshold}
  236. sres = self.search(req, index_name(tenant_id), embd_mdl)
  237. sim, tsim, vsim = self.rerank(
  238. sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
  239. idx = np.argsort(sim * -1)
  240. dim = len(sres.query_vector)
  241. start_idx = (page - 1) * page_size
  242. for i in idx:
  243. if sim[i] < similarity_threshold:
  244. break
  245. ranks["total"] += 1
  246. start_idx -= 1
  247. if start_idx >= 0:
  248. continue
  249. if len(ranks["chunks"]) == page_size:
  250. if aggs:
  251. continue
  252. break
  253. id = sres.ids[i]
  254. dnm = sres.field[id]["docnm_kwd"]
  255. did = sres.field[id]["doc_id"]
  256. d = {
  257. "chunk_id": id,
  258. "content_ltks": sres.field[id]["content_ltks"],
  259. "content_with_weight": sres.field[id]["content_with_weight"],
  260. "doc_id": sres.field[id]["doc_id"],
  261. "docnm_kwd": dnm,
  262. "kb_id": sres.field[id]["kb_id"],
  263. "important_kwd": sres.field[id].get("important_kwd", []),
  264. "img_id": sres.field[id].get("img_id", ""),
  265. "similarity": sim[i],
  266. "vector_similarity": vsim[i],
  267. "term_similarity": tsim[i],
  268. "vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim)))
  269. }
  270. ranks["chunks"].append(d)
  271. if dnm not in ranks["doc_aggs"]:
  272. ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
  273. ranks["doc_aggs"][dnm]["count"] += 1
  274. ranks["doc_aggs"] = [{"doc_name": k, "doc_id": v["doc_id"], "count": v["count"]} for k,v in sorted(ranks["doc_aggs"].items(), key=lambda x:x[1]["count"]*-1)]
  275. return ranks
  276. def sql_retrieval(self, sql, fetch_size=128, format="json"):
  277. sql = re.sub(r"[ ]+", " ", sql)
  278. sql = sql.replace("%", "")
  279. es_logger.info(f"Get es sql: {sql}")
  280. replaces = []
  281. for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql):
  282. fld, v = r.group(1), r.group(3)
  283. match = " MATCH({}, '{}', 'operator=OR;fuzziness=AUTO:1,3;minimum_should_match=30%') ".format(fld, huqie.qieqie(huqie.qie(v)))
  284. replaces.append(("{}{}'{}'".format(r.group(1), r.group(2), r.group(3)), match))
  285. for p, r in replaces: sql = sql.replace(p, r, 1)
  286. es_logger.info(f"To es: {sql}")
  287. try:
  288. tbl = self.es.sql(sql, fetch_size, format)
  289. return tbl
  290. except Exception as e:
  291. es_logger.error(f"SQL failure: {sql} =>" + str(e))