| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import time
 - import uuid
 - 
 - from api.db import LLMType, UserTenantRole
 - from api.db.db_models import init_database_tables as init_web_db
 - from api.db.services import UserService
 - from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
 - from api.db.services.user_service import TenantService, UserTenantService
 - from api.settings import CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, LLM_FACTORY, API_KEY
 - 
 - 
 - def init_superuser():
 -     user_info = {
 -         "id": uuid.uuid1().hex,
 -         "password": "admin",
 -         "nickname": "admin",
 -         "is_superuser": True,
 -         "email": "kai.hu@infiniflow.org",
 -         "creator": "system",
 -         "status": "1",
 -     }
 -     tenant = {
 -         "id": user_info["id"],
 -         "name": user_info["nickname"] + "‘s Kingdom",
 -         "llm_id": CHAT_MDL,
 -         "embd_id": EMBEDDING_MDL,
 -         "asr_id": ASR_MDL,
 -         "parser_ids": PARSERS,
 -         "img2txt_id": IMAGE2TEXT_MDL
 -     }
 -     usr_tenant = {
 -         "tenant_id": user_info["id"],
 -         "user_id": user_info["id"],
 -         "invited_by": user_info["id"],
 -         "role": UserTenantRole.OWNER
 -     }
 -     tenant_llm = []
 -     for llm in LLMService.query(fid=LLM_FACTORY):
 -         tenant_llm.append(
 -             {"tenant_id": user_info["id"], "llm_factory": LLM_FACTORY, "llm_name": llm.llm_name, "model_type": llm.model_type,
 -              "api_key": API_KEY})
 - 
 -     if not UserService.save(**user_info):
 -         print("【ERROR】can't init admin.")
 -         return
 -     TenantService.save(**tenant)
 -     UserTenantService.save(**usr_tenant)
 -     TenantLLMService.insert_many(tenant_llm)
 -     UserService.save(**user_info)
 - 
 -     chat_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["llm_id"])
 -     msg = chat_mdl.chat(system="", history=[{"role": "user", "content": "Hello!"}], gen_conf={})
 -     if msg.find("ERROR: ") == 0:
 -         print("【ERROR】: '{}' dosen't work. {}".format(tenant["llm_id"]), msg)
 -     embd_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["embd_id"])
 -     v,c = embd_mdl.encode(["Hello!"])
 -     if c == 0:
 -         print("【ERROR】: '{}' dosen't work...".format(tenant["embd_id"]))
 - 
 - 
 - def init_llm_factory():
 -     factory_infos = [{
 -             "name": "OpenAI",
 -             "logo": "",
 -             "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
 -             "status": "1",
 -         },{
 -             "name": "通义千问",
 -             "logo": "",
 -             "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
 -             "status": "1",
 -         },{
 -             "name": "智普AI",
 -             "logo": "",
 -             "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
 -             "status": "1",
 -         },{
 -             "name": "文心一言",
 -             "logo": "",
 -             "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
 -             "status": "1",
 -         },
 -     ]
 -     llm_infos = [
 -         # ---------------------- OpenAI ------------------------
 -         {
 -             "fid": factory_infos[0]["name"],
 -             "llm_name": "gpt-3.5-turbo",
 -             "tags": "LLM,CHAT,4K",
 -             "max_tokens": 4096,
 -             "model_type": LLMType.CHAT.value
 -         },{
 -             "fid": factory_infos[0]["name"],
 -             "llm_name": "gpt-3.5-turbo-16k-0613",
 -             "tags": "LLM,CHAT,16k",
 -             "max_tokens": 16385,
 -             "model_type": LLMType.CHAT.value
 -         },{
 -             "fid": factory_infos[0]["name"],
 -             "llm_name": "text-embedding-ada-002",
 -             "tags": "TEXT EMBEDDING,8K",
 -             "max_tokens": 8191,
 -             "model_type": LLMType.EMBEDDING.value
 -         },{
 -             "fid": factory_infos[0]["name"],
 -             "llm_name": "whisper-1",
 -             "tags": "SPEECH2TEXT",
 -             "max_tokens": 25*1024*1024,
 -             "model_type": LLMType.SPEECH2TEXT.value
 -         },{
 -             "fid": factory_infos[0]["name"],
 -             "llm_name": "gpt-4",
 -             "tags": "LLM,CHAT,8K",
 -             "max_tokens": 8191,
 -             "model_type": LLMType.CHAT.value
 -         },{
 -             "fid": factory_infos[0]["name"],
 -             "llm_name": "gpt-4-32k",
 -             "tags": "LLM,CHAT,32K",
 -             "max_tokens": 32768,
 -             "model_type": LLMType.CHAT.value
 -         },{
 -             "fid": factory_infos[0]["name"],
 -             "llm_name": "gpt-4-vision-preview",
 -             "tags": "LLM,CHAT,IMAGE2TEXT",
 -             "max_tokens": 765,
 -             "model_type": LLMType.IMAGE2TEXT.value
 -         },
 -         # ----------------------- Qwen -----------------------
 -         {
 -             "fid": factory_infos[1]["name"],
 -             "llm_name": "qwen-turbo",
 -             "tags": "LLM,CHAT,8K",
 -             "max_tokens": 8191,
 -             "model_type": LLMType.CHAT.value
 -         },{
 -             "fid": factory_infos[1]["name"],
 -             "llm_name": "qwen-plus",
 -             "tags": "LLM,CHAT,32K",
 -             "max_tokens": 32768,
 -             "model_type": LLMType.CHAT.value
 -         },{
 -             "fid": factory_infos[1]["name"],
 -             "llm_name": "text-embedding-v2",
 -             "tags": "TEXT EMBEDDING,2K",
 -             "max_tokens": 2048,
 -             "model_type": LLMType.EMBEDDING.value
 -         },{
 -             "fid": factory_infos[1]["name"],
 -             "llm_name": "paraformer-realtime-8k-v1",
 -             "tags": "SPEECH2TEXT",
 -             "max_tokens": 25*1024*1024,
 -             "model_type": LLMType.SPEECH2TEXT.value
 -         },{
 -             "fid": factory_infos[1]["name"],
 -             "llm_name": "qwen-vl-max",
 -             "tags": "LLM,CHAT,IMAGE2TEXT",
 -             "max_tokens": 765,
 -             "model_type": LLMType.IMAGE2TEXT.value
 -         },
 -         # ---------------------- ZhipuAI ----------------------
 -         {
 -             "fid": factory_infos[2]["name"],
 -             "llm_name": "glm-3-turbo",
 -             "tags": "LLM,CHAT,",
 -             "max_tokens": 128 * 1000,
 -             "model_type": LLMType.CHAT.value
 -         }, {
 -             "fid": factory_infos[2]["name"],
 -             "llm_name": "glm-4",
 -             "tags": "LLM,CHAT,",
 -             "max_tokens": 128 * 1000,
 -             "model_type": LLMType.CHAT.value
 -         }, {
 -             "fid": factory_infos[2]["name"],
 -             "llm_name": "glm-4v",
 -             "tags": "LLM,CHAT,IMAGE2TEXT",
 -             "max_tokens": 2000,
 -             "model_type": LLMType.IMAGE2TEXT.value
 -         },
 -         {
 -             "fid": factory_infos[2]["name"],
 -             "llm_name": "embedding-2",
 -             "tags": "TEXT EMBEDDING",
 -             "max_tokens": 512,
 -             "model_type": LLMType.SPEECH2TEXT.value
 -         },
 -     ]
 -     for info in factory_infos:
 -         LLMFactoriesService.save(**info)
 -     for info in llm_infos:
 -         LLMService.save(**info)
 - 
 - 
 - def init_web_data():
 -     start_time = time.time()
 - 
 -     if not LLMService.get_all().count():init_llm_factory()
 -     if not UserService.get_all().count():
 -         init_superuser()
 - 
 -     print("init web data success:{}".format(time.time() - start_time))
 - 
 - 
 - if __name__ == '__main__':
 -     init_web_db()
 -     init_web_data()
 
 
  |