Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import re
  17. from flask import request
  18. from flask_login import login_required
  19. from api.db.services.dialog_service import DialogService, ConversationService
  20. from api.db import LLMType
  21. from api.db.services.knowledgebase_service import KnowledgebaseService
  22. from api.db.services.llm_service import LLMService, LLMBundle
  23. from api.settings import access_logger, stat_logger, retrievaler
  24. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  25. from api.utils import get_uuid
  26. from api.utils.api_utils import get_json_result
  27. from rag.app.resume import forbidden_select_fields4resume
  28. from rag.nlp.search import index_name
  29. from rag.utils import num_tokens_from_string, encoder, rmSpace
  30. @manager.route('/set', methods=['POST'])
  31. @login_required
  32. def set_conversation():
  33. req = request.json
  34. conv_id = req.get("conversation_id")
  35. if conv_id:
  36. del req["conversation_id"]
  37. try:
  38. if not ConversationService.update_by_id(conv_id, req):
  39. return get_data_error_result(retmsg="Conversation not found!")
  40. e, conv = ConversationService.get_by_id(conv_id)
  41. if not e:
  42. return get_data_error_result(
  43. retmsg="Fail to update a conversation!")
  44. conv = conv.to_dict()
  45. return get_json_result(data=conv)
  46. except Exception as e:
  47. return server_error_response(e)
  48. try:
  49. e, dia = DialogService.get_by_id(req["dialog_id"])
  50. if not e:
  51. return get_data_error_result(retmsg="Dialog not found")
  52. conv = {
  53. "id": get_uuid(),
  54. "dialog_id": req["dialog_id"],
  55. "name": req.get("name", "New conversation"),
  56. "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
  57. }
  58. ConversationService.save(**conv)
  59. e, conv = ConversationService.get_by_id(conv["id"])
  60. if not e:
  61. return get_data_error_result(retmsg="Fail to new a conversation!")
  62. conv = conv.to_dict()
  63. return get_json_result(data=conv)
  64. except Exception as e:
  65. return server_error_response(e)
  66. @manager.route('/get', methods=['GET'])
  67. @login_required
  68. def get():
  69. conv_id = request.args["conversation_id"]
  70. try:
  71. e, conv = ConversationService.get_by_id(conv_id)
  72. if not e:
  73. return get_data_error_result(retmsg="Conversation not found!")
  74. conv = conv.to_dict()
  75. return get_json_result(data=conv)
  76. except Exception as e:
  77. return server_error_response(e)
  78. @manager.route('/rm', methods=['POST'])
  79. @login_required
  80. def rm():
  81. conv_ids = request.json["conversation_ids"]
  82. try:
  83. for cid in conv_ids:
  84. ConversationService.delete_by_id(cid)
  85. return get_json_result(data=True)
  86. except Exception as e:
  87. return server_error_response(e)
  88. @manager.route('/list', methods=['GET'])
  89. @login_required
  90. def list_convsersation():
  91. dialog_id = request.args["dialog_id"]
  92. try:
  93. convs = ConversationService.query(dialog_id=dialog_id, order_by=ConversationService.model.create_time, reverse=True)
  94. convs = [d.to_dict() for d in convs]
  95. return get_json_result(data=convs)
  96. except Exception as e:
  97. return server_error_response(e)
  98. def message_fit_in(msg, max_length=4000):
  99. def count():
  100. nonlocal msg
  101. tks_cnts = []
  102. for m in msg: tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
  103. total = 0
  104. for m in tks_cnts: total += m["count"]
  105. return total
  106. c = count()
  107. if c < max_length: return c, msg
  108. msg = [m for m in msg if m.role in ["system", "user"]]
  109. c = count()
  110. if c < max_length: return c, msg
  111. msg_ = [m for m in msg[:-1] if m.role == "system"]
  112. msg_.append(msg[-1])
  113. msg = msg_
  114. c = count()
  115. if c < max_length: return c, msg
  116. ll = num_tokens_from_string(msg_[0].content)
  117. l = num_tokens_from_string(msg_[-1].content)
  118. if ll / (ll + l) > 0.8:
  119. m = msg_[0].content
  120. m = encoder.decode(encoder.encode(m)[:max_length - l])
  121. msg[0].content = m
  122. return max_length, msg
  123. m = msg_[1].content
  124. m = encoder.decode(encoder.encode(m)[:max_length - l])
  125. msg[1].content = m
  126. return max_length, msg
  127. @manager.route('/completion', methods=['POST'])
  128. @login_required
  129. @validate_request("conversation_id", "messages")
  130. def completion():
  131. req = request.json
  132. msg = []
  133. for m in req["messages"]:
  134. if m["role"] == "system": continue
  135. if m["role"] == "assistant" and not msg: continue
  136. msg.append({"role": m["role"], "content": m["content"]})
  137. try:
  138. e, conv = ConversationService.get_by_id(req["conversation_id"])
  139. if not e:
  140. return get_data_error_result(retmsg="Conversation not found!")
  141. conv.message.append(msg[-1])
  142. e, dia = DialogService.get_by_id(conv.dialog_id)
  143. if not e:
  144. return get_data_error_result(retmsg="Dialog not found!")
  145. del req["conversation_id"]
  146. del req["messages"]
  147. ans = chat(dia, msg, **req)
  148. if not conv.reference: conv.reference = []
  149. conv.reference.append(ans["reference"])
  150. conv.message.append({"role": "assistant", "content": ans["answer"]})
  151. ConversationService.update_by_id(conv.id, conv.to_dict())
  152. return get_json_result(data=ans)
  153. except Exception as e:
  154. return server_error_response(e)
  155. def chat(dialog, messages, **kwargs):
  156. assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
  157. llm = LLMService.query(llm_name=dialog.llm_id)
  158. if not llm:
  159. raise LookupError("LLM(%s) not found" % dialog.llm_id)
  160. llm = llm[0]
  161. question = messages[-1]["content"]
  162. embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
  163. chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
  164. field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
  165. ## try to use sql if field mapping is good to go
  166. if field_map:
  167. stat_logger.info("Use SQL to retrieval.")
  168. markdown_tbl, chunks = use_sql(question, field_map, dialog.tenant_id, chat_mdl)
  169. if markdown_tbl:
  170. return {"answer": markdown_tbl, "retrieval": {"chunks": chunks}}
  171. prompt_config = dialog.prompt_config
  172. for p in prompt_config["parameters"]:
  173. if p["key"] == "knowledge": continue
  174. if p["key"] not in kwargs and not p["optional"]: raise KeyError("Miss parameter: " + p["key"])
  175. if p["key"] not in kwargs:
  176. prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ")
  177. kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
  178. dialog.similarity_threshold,
  179. dialog.vector_similarity_weight, top=1024, aggs=False)
  180. knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
  181. if not knowledges and prompt_config.get("empty_response"):
  182. return {"answer": prompt_config["empty_response"], "reference": kbinfos}
  183. kwargs["knowledge"] = "\n".join(knowledges)
  184. gen_conf = dialog.llm_setting
  185. msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"]
  186. used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
  187. if "max_tokens" in gen_conf:
  188. gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
  189. answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
  190. if knowledges:
  191. answer = retrievaler.insert_citations(answer,
  192. [ck["content_ltks"] for ck in kbinfos["chunks"]],
  193. [ck["vector"] for ck in kbinfos["chunks"]],
  194. embd_mdl,
  195. tkweight=1 - dialog.vector_similarity_weight,
  196. vtweight=dialog.vector_similarity_weight)
  197. for c in kbinfos["chunks"]:
  198. if c.get("vector"): del c["vector"]
  199. return {"answer": answer, "reference": kbinfos}
  200. def use_sql(question, field_map, tenant_id, chat_mdl):
  201. sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据我的问题写出sql。"
  202. user_promt = """
  203. 表名:{};
  204. 数据库表字段说明如下:
  205. {}
  206. 问题:{}
  207. 请写出SQL,且只要SQL,不要有其他说明及文字。
  208. """.format(
  209. index_name(tenant_id),
  210. "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
  211. question
  212. )
  213. sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {"temperature": 0.06})
  214. stat_logger.info(f"“{question}” get SQL: {sql}")
  215. sql = re.sub(r"[\r\n]+", " ", sql.lower())
  216. sql = re.sub(r".*?select ", "select ", sql.lower())
  217. sql = re.sub(r" +", " ", sql)
  218. sql = re.sub(r"([;;]|```).*", "", sql)
  219. if sql[:len("select ")] != "select ":
  220. return None, None
  221. if sql[:len("select *")] != "select *":
  222. sql = "select doc_id,docnm_kwd," + sql[6:]
  223. else:
  224. flds = []
  225. for k in field_map.keys():
  226. if k in forbidden_select_fields4resume:continue
  227. if len(flds) > 11:break
  228. flds.append(k)
  229. sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
  230. stat_logger.info(f"“{question}” get SQL(refined): {sql}")
  231. tbl = retrievaler.sql_retrieval(sql, format="json")
  232. if not tbl or len(tbl["rows"]) == 0: return None, None
  233. docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"])
  234. docnm_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"])
  235. clmn_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
  236. # compose markdown table
  237. clmns = "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], f"C{i}")) for i in clmn_idx]) + "|原文"
  238. line = "|".join(["------" for _ in range(len(clmn_idx))]) + "|------"
  239. rows = ["|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") + "|" for r in tbl["rows"]]
  240. if not docid_idx or not docnm_idx:
  241. access_logger.error("SQL missing field: " + sql)
  242. return "\n".join([clmns, line, "\n".join(rows)]), []
  243. rows = "\n".join([r + f"##{ii}$$" for ii, r in enumerate(rows)])
  244. docid_idx = list(docid_idx)[0]
  245. docnm_idx = list(docnm_idx)[0]
  246. return "\n".join([clmns, line, rows]), [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]]