| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import logging
- import re
- from dataclasses import dataclass
-
- from rag.settings import TAG_FLD, PAGERANK_FLD
- from rag.utils import rmSpace
- from rag.nlp import rag_tokenizer, query
- import numpy as np
- from rag.utils.doc_store_conn import DocStoreConnection, MatchDenseExpr, FusionExpr, OrderByExpr
-
-
- def index_name(uid): return f"ragflow_{uid}"
-
-
- class Dealer:
- def __init__(self, dataStore: DocStoreConnection):
- self.qryr = query.FulltextQueryer()
- self.dataStore = dataStore
-
- @dataclass
- class SearchResult:
- total: int
- ids: list[str]
- query_vector: list[float] | None = None
- field: dict | None = None
- highlight: dict | None = None
- aggregation: list | dict | None = None
- keywords: list[str] | None = None
- group_docs: list[list] | None = None
-
- def get_vector(self, txt, emb_mdl, topk=10, similarity=0.1):
- qv, _ = emb_mdl.encode_queries(txt)
- shape = np.array(qv).shape
- if len(shape) > 1:
- raise Exception(
- f"Dealer.get_vector returned array's shape {shape} doesn't match expectation(exact one dimension).")
- embedding_data = [float(v) for v in qv]
- vector_column_name = f"q_{len(embedding_data)}_vec"
- return MatchDenseExpr(vector_column_name, embedding_data, 'float', 'cosine', topk, {"similarity": similarity})
-
- def get_filters(self, req):
- condition = dict()
- for key, field in {"kb_ids": "kb_id", "doc_ids": "doc_id"}.items():
- if key in req and req[key] is not None:
- condition[field] = req[key]
- # TODO(yzc): `available_int` is nullable however infinity doesn't support nullable columns.
- for key in ["knowledge_graph_kwd", "available_int", "entity_kwd", "from_entity_kwd", "to_entity_kwd", "removed_kwd"]:
- if key in req and req[key] is not None:
- condition[key] = req[key]
- return condition
-
- def search(self, req, idx_names: str | list[str],
- kb_ids: list[str],
- emb_mdl=None,
- highlight=False,
- rank_feature: dict | None = None
- ):
- filters = self.get_filters(req)
- orderBy = OrderByExpr()
-
- pg = int(req.get("page", 1)) - 1
- topk = int(req.get("topk", 1024))
- ps = int(req.get("size", topk))
- offset, limit = pg * ps, ps
-
- src = req.get("fields",
- ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd", "position_int",
- "doc_id", "page_num_int", "top_int", "create_timestamp_flt", "knowledge_graph_kwd",
- "question_kwd", "question_tks",
- "available_int", "content_with_weight", PAGERANK_FLD, TAG_FLD])
- kwds = set([])
-
- qst = req.get("question", "")
- q_vec = []
- if not qst:
- if req.get("sort"):
- orderBy.asc("page_num_int")
- orderBy.asc("top_int")
- orderBy.desc("create_timestamp_flt")
- res = self.dataStore.search(src, [], filters, [], orderBy, offset, limit, idx_names, kb_ids)
- total = self.dataStore.getTotal(res)
- logging.debug("Dealer.search TOTAL: {}".format(total))
- else:
- highlightFields = ["content_ltks", "title_tks"] if highlight else []
- matchText, keywords = self.qryr.question(qst, min_match=0.3)
- if emb_mdl is None:
- matchExprs = [matchText]
- res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit,
- idx_names, kb_ids, rank_feature=rank_feature)
- total = self.dataStore.getTotal(res)
- logging.debug("Dealer.search TOTAL: {}".format(total))
- else:
- matchDense = self.get_vector(qst, emb_mdl, topk, req.get("similarity", 0.1))
- q_vec = matchDense.embedding_data
- src.append(f"q_{len(q_vec)}_vec")
-
- fusionExpr = FusionExpr("weighted_sum", topk, {"weights": "0.05, 0.95"})
- matchExprs = [matchText, matchDense, fusionExpr]
-
- res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit,
- idx_names, kb_ids, rank_feature=rank_feature)
- total = self.dataStore.getTotal(res)
- logging.debug("Dealer.search TOTAL: {}".format(total))
-
- # If result is empty, try again with lower min_match
- if total == 0:
- matchText, _ = self.qryr.question(qst, min_match=0.1)
- filters.pop("doc_ids", None)
- matchDense.extra_options["similarity"] = 0.17
- res = self.dataStore.search(src, highlightFields, filters, [matchText, matchDense, fusionExpr],
- orderBy, offset, limit, idx_names, kb_ids, rank_feature=rank_feature)
- total = self.dataStore.getTotal(res)
- logging.debug("Dealer.search 2 TOTAL: {}".format(total))
-
- for k in keywords:
- kwds.add(k)
- for kk in rag_tokenizer.fine_grained_tokenize(k).split():
- if len(kk) < 2:
- continue
- if kk in kwds:
- continue
- kwds.add(kk)
-
- logging.debug(f"TOTAL: {total}")
- ids = self.dataStore.getChunkIds(res)
- keywords = list(kwds)
- highlight = self.dataStore.getHighlight(res, keywords, "content_with_weight")
- aggs = self.dataStore.getAggregation(res, "docnm_kwd")
- return self.SearchResult(
- total=total,
- ids=ids,
- query_vector=q_vec,
- aggregation=aggs,
- highlight=highlight,
- field=self.dataStore.getFields(res, src),
- keywords=keywords
- )
-
- @staticmethod
- def trans2floats(txt):
- return [float(t) for t in txt.split("\t")]
-
- def insert_citations(self, answer, chunks, chunk_v,
- embd_mdl, tkweight=0.1, vtweight=0.9):
- assert len(chunks) == len(chunk_v)
- if not chunks:
- return answer, set([])
- pieces = re.split(r"(```)", answer)
- if len(pieces) >= 3:
- i = 0
- pieces_ = []
- while i < len(pieces):
- if pieces[i] == "```":
- st = i
- i += 1
- while i < len(pieces) and pieces[i] != "```":
- i += 1
- if i < len(pieces):
- i += 1
- pieces_.append("".join(pieces[st: i]) + "\n")
- else:
- pieces_.extend(
- re.split(
- r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])",
- pieces[i]))
- i += 1
- pieces = pieces_
- else:
- pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer)
- for i in range(1, len(pieces)):
- if re.match(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i]):
- pieces[i - 1] += pieces[i][0]
- pieces[i] = pieces[i][1:]
- idx = []
- pieces_ = []
- for i, t in enumerate(pieces):
- if len(t) < 5:
- continue
- idx.append(i)
- pieces_.append(t)
- logging.debug("{} => {}".format(answer, pieces_))
- if not pieces_:
- return answer, set([])
-
- ans_v, _ = embd_mdl.encode(pieces_)
- for i in range(len(chunk_v)):
- if len(ans_v[0]) != len(chunk_v[i]):
- chunk_v[i] = [0.0]*len(ans_v[0])
- logging.warning("The dimension of query and chunk do not match: {} vs. {}".format(len(ans_v[0]), len(chunk_v[i])))
-
- assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
- len(ans_v[0]), len(chunk_v[0]))
-
- chunks_tks = [rag_tokenizer.tokenize(self.qryr.rmWWW(ck)).split()
- for ck in chunks]
- cites = {}
- thr = 0.63
- while thr > 0.3 and len(cites.keys()) == 0 and pieces_ and chunks_tks:
- for i, a in enumerate(pieces_):
- sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
- chunk_v,
- rag_tokenizer.tokenize(
- self.qryr.rmWWW(pieces_[i])).split(),
- chunks_tks,
- tkweight, vtweight)
- mx = np.max(sim) * 0.99
- logging.debug("{} SIM: {}".format(pieces_[i], mx))
- if mx < thr:
- continue
- cites[idx[i]] = list(
- set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
- thr *= 0.8
-
- res = ""
- seted = set([])
- for i, p in enumerate(pieces):
- res += p
- if i not in idx:
- continue
- if i not in cites:
- continue
- for c in cites[i]:
- assert int(c) < len(chunk_v)
- for c in cites[i]:
- if c in seted:
- continue
- res += f" ##{c}$$"
- seted.add(c)
-
- return res, seted
-
- def _rank_feature_scores(self, query_rfea, search_res):
- ## For rank feature(tag_fea) scores.
- rank_fea = []
- pageranks = []
- for chunk_id in search_res.ids:
- pageranks.append(search_res.field[chunk_id].get(PAGERANK_FLD, 0))
- pageranks = np.array(pageranks, dtype=float)
-
- if not query_rfea:
- return np.array([0 for _ in range(len(search_res.ids))]) + pageranks
-
- q_denor = np.sqrt(np.sum([s*s for t,s in query_rfea.items() if t != PAGERANK_FLD]))
- for i in search_res.ids:
- nor, denor = 0, 0
- for t, sc in eval(search_res.field[i].get(TAG_FLD, "{}")).items():
- if t in query_rfea:
- nor += query_rfea[t] * sc
- denor += sc * sc
- if denor == 0:
- rank_fea.append(0)
- else:
- rank_fea.append(nor/np.sqrt(denor)/q_denor)
- return np.array(rank_fea)*10. + pageranks
-
- def rerank(self, sres, query, tkweight=0.3,
- vtweight=0.7, cfield="content_ltks",
- rank_feature: dict | None = None
- ):
- _, keywords = self.qryr.question(query)
- vector_size = len(sres.query_vector)
- vector_column = f"q_{vector_size}_vec"
- zero_vector = [0.0] * vector_size
- ins_embd = []
- for chunk_id in sres.ids:
- vector = sres.field[chunk_id].get(vector_column, zero_vector)
- if isinstance(vector, str):
- vector = [float(v) for v in vector.split("\t")]
- ins_embd.append(vector)
- if not ins_embd:
- return [], [], []
-
- for i in sres.ids:
- if isinstance(sres.field[i].get("important_kwd", []), str):
- sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]]
- ins_tw = []
- for i in sres.ids:
- content_ltks = sres.field[i][cfield].split()
- title_tks = [t for t in sres.field[i].get("title_tks", "").split() if t]
- question_tks = [t for t in sres.field[i].get("question_tks", "").split() if t]
- important_kwd = sres.field[i].get("important_kwd", [])
- tks = content_ltks + title_tks * 2 + important_kwd * 5 + question_tks * 6
- ins_tw.append(tks)
-
- ## For rank feature(tag_fea) scores.
- rank_fea = self._rank_feature_scores(rank_feature, sres)
-
- sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
- ins_embd,
- keywords,
- ins_tw, tkweight, vtweight)
-
- return sim + rank_fea, tksim, vtsim
-
- def rerank_by_model(self, rerank_mdl, sres, query, tkweight=0.3,
- vtweight=0.7, cfield="content_ltks",
- rank_feature: dict | None = None):
- _, keywords = self.qryr.question(query)
-
- for i in sres.ids:
- if isinstance(sres.field[i].get("important_kwd", []), str):
- sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]]
- ins_tw = []
- for i in sres.ids:
- content_ltks = sres.field[i][cfield].split()
- title_tks = [t for t in sres.field[i].get("title_tks", "").split() if t]
- important_kwd = sres.field[i].get("important_kwd", [])
- tks = content_ltks + title_tks + important_kwd
- ins_tw.append(tks)
-
- tksim = self.qryr.token_similarity(keywords, ins_tw)
- vtsim, _ = rerank_mdl.similarity(query, [rmSpace(" ".join(tks)) for tks in ins_tw])
- ## For rank feature(tag_fea) scores.
- rank_fea = self._rank_feature_scores(rank_feature, sres)
-
- return tkweight * (np.array(tksim)+rank_fea) + vtweight * vtsim, tksim, vtsim
-
- def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
- return self.qryr.hybrid_similarity(ans_embd,
- ins_embd,
- rag_tokenizer.tokenize(ans).split(),
- rag_tokenizer.tokenize(inst).split())
-
- def retrieval(self, question, embd_mdl, tenant_ids, kb_ids, page, page_size, similarity_threshold=0.2,
- vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True,
- rerank_mdl=None, highlight=False,
- rank_feature: dict | None = {PAGERANK_FLD: 10}):
- ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
- if not question:
- return ranks
-
- RERANK_PAGE_LIMIT = 3
- req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": max(page_size * RERANK_PAGE_LIMIT, 128),
- "question": question, "vector": True, "topk": top,
- "similarity": similarity_threshold,
- "available_int": 1}
-
- if page > RERANK_PAGE_LIMIT:
- req["page"] = page
- req["size"] = page_size
-
- if isinstance(tenant_ids, str):
- tenant_ids = tenant_ids.split(",")
-
- sres = self.search(req, [index_name(tid) for tid in tenant_ids],
- kb_ids, embd_mdl, highlight, rank_feature=rank_feature)
- ranks["total"] = sres.total
-
- if page <= RERANK_PAGE_LIMIT:
- if rerank_mdl and sres.total > 0:
- sim, tsim, vsim = self.rerank_by_model(rerank_mdl,
- sres, question, 1 - vector_similarity_weight,
- vector_similarity_weight,
- rank_feature=rank_feature)
- else:
- sim, tsim, vsim = self.rerank(
- sres, question, 1 - vector_similarity_weight, vector_similarity_weight,
- rank_feature=rank_feature)
- idx = np.argsort(sim * -1)[(page - 1) * page_size:page * page_size]
- else:
- sim = tsim = vsim = [1] * len(sres.ids)
- idx = list(range(len(sres.ids)))
-
- dim = len(sres.query_vector)
- vector_column = f"q_{dim}_vec"
- zero_vector = [0.0] * dim
- for i in idx:
- if sim[i] < similarity_threshold:
- break
- if len(ranks["chunks"]) >= page_size:
- if aggs:
- continue
- break
- id = sres.ids[i]
- chunk = sres.field[id]
- dnm = chunk.get("docnm_kwd", "")
- did = chunk.get("doc_id", "")
- position_int = chunk.get("position_int", [])
- d = {
- "chunk_id": id,
- "content_ltks": chunk["content_ltks"],
- "content_with_weight": chunk["content_with_weight"],
- "doc_id": did,
- "docnm_kwd": dnm,
- "kb_id": chunk["kb_id"],
- "important_kwd": chunk.get("important_kwd", []),
- "image_id": chunk.get("img_id", ""),
- "similarity": sim[i],
- "vector_similarity": vsim[i],
- "term_similarity": tsim[i],
- "vector": chunk.get(vector_column, zero_vector),
- "positions": position_int,
- }
- if highlight and sres.highlight:
- if id in sres.highlight:
- d["highlight"] = rmSpace(sres.highlight[id])
- else:
- d["highlight"] = d["content_with_weight"]
- ranks["chunks"].append(d)
- if dnm not in ranks["doc_aggs"]:
- ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
- ranks["doc_aggs"][dnm]["count"] += 1
- ranks["doc_aggs"] = [{"doc_name": k,
- "doc_id": v["doc_id"],
- "count": v["count"]} for k,
- v in sorted(ranks["doc_aggs"].items(),
- key=lambda x: x[1]["count"] * -1)]
- ranks["chunks"] = ranks["chunks"][:page_size]
-
- return ranks
-
- def sql_retrieval(self, sql, fetch_size=128, format="json"):
- tbl = self.dataStore.sql(sql, fetch_size, format)
- return tbl
-
- def chunk_list(self, doc_id: str, tenant_id: str,
- kb_ids: list[str], max_count=1024,
- offset=0,
- fields=["docnm_kwd", "content_with_weight", "img_id"]):
- condition = {"doc_id": doc_id}
- res = []
- bs = 128
- for p in range(offset, max_count, bs):
- es_res = self.dataStore.search(fields, [], condition, [], OrderByExpr(), p, bs, index_name(tenant_id),
- kb_ids)
- dict_chunks = self.dataStore.getFields(es_res, fields)
- for id, doc in dict_chunks.items():
- doc["id"] = id
- if dict_chunks:
- res.extend(dict_chunks.values())
- if len(dict_chunks.values()) < bs:
- break
- return res
-
- def all_tags(self, tenant_id: str, kb_ids: list[str], S=1000):
- res = self.dataStore.search([], [], {}, [], OrderByExpr(), 0, 0, index_name(tenant_id), kb_ids, ["tag_kwd"])
- return self.dataStore.getAggregation(res, "tag_kwd")
-
- def all_tags_in_portion(self, tenant_id: str, kb_ids: list[str], S=1000):
- res = self.dataStore.search([], [], {}, [], OrderByExpr(), 0, 0, index_name(tenant_id), kb_ids, ["tag_kwd"])
- res = self.dataStore.getAggregation(res, "tag_kwd")
- total = np.sum([c for _, c in res])
- return {t: (c + 1) / (total + S) for t, c in res}
-
- def tag_content(self, tenant_id: str, kb_ids: list[str], doc, all_tags, topn_tags=3, keywords_topn=30, S=1000):
- idx_nm = index_name(tenant_id)
- match_txt = self.qryr.paragraph(doc["title_tks"] + " " + doc["content_ltks"], doc.get("important_kwd", []), keywords_topn)
- res = self.dataStore.search([], [], {}, [match_txt], OrderByExpr(), 0, 0, idx_nm, kb_ids, ["tag_kwd"])
- aggs = self.dataStore.getAggregation(res, "tag_kwd")
- if not aggs:
- return False
- cnt = np.sum([c for _, c in aggs])
- tag_fea = sorted([(a, round(0.1*(c + 1) / (cnt + S) / max(1e-6, all_tags.get(a, 0.0001)))) for a, c in aggs],
- key=lambda x: x[1] * -1)[:topn_tags]
- doc[TAG_FLD] = {a: c for a, c in tag_fea if c > 0}
- return True
-
- def tag_query(self, question: str, tenant_ids: str | list[str], kb_ids: list[str], all_tags, topn_tags=3, S=1000):
- if isinstance(tenant_ids, str):
- idx_nms = index_name(tenant_ids)
- else:
- idx_nms = [index_name(tid) for tid in tenant_ids]
- match_txt, _ = self.qryr.question(question, min_match=0.0)
- res = self.dataStore.search([], [], {}, [match_txt], OrderByExpr(), 0, 0, idx_nms, kb_ids, ["tag_kwd"])
- aggs = self.dataStore.getAggregation(res, "tag_kwd")
- if not aggs:
- return {}
- cnt = np.sum([c for _, c in aggs])
- tag_fea = sorted([(a, round(0.1*(c + 1) / (cnt + S) / max(1e-6, all_tags.get(a, 0.0001)))) for a, c in aggs],
- key=lambda x: x[1] * -1)[:topn_tags]
- return {a: max(1, c) for a, c in tag_fea}
|