Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482
  1. #
  2. # Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. import os
  18. import math
  19. import numpy as np
  20. import cv2
  21. from copy import deepcopy
  22. import onnxruntime as ort
  23. from huggingface_hub import snapshot_download
  24. from api.utils.file_utils import get_project_base_directory
  25. from .operators import * # noqa: F403
  26. from .operators import preprocess
  27. from . import operators
  28. class Recognizer(object):
  29. def __init__(self, label_list, task_name, model_dir=None):
  30. """
  31. If you have trouble downloading HuggingFace models, -_^ this might help!!
  32. For Linux:
  33. export HF_ENDPOINT=https://hf-mirror.com
  34. For Windows:
  35. Good luck
  36. ^_-
  37. """
  38. if not model_dir:
  39. model_dir = os.path.join(
  40. get_project_base_directory(),
  41. "rag/res/deepdoc")
  42. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  43. if not os.path.exists(model_file_path):
  44. model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
  45. local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
  46. local_dir_use_symlinks=False)
  47. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  48. else:
  49. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  50. if not os.path.exists(model_file_path):
  51. raise ValueError("not find model file path {}".format(
  52. model_file_path))
  53. # https://github.com/microsoft/onnxruntime/issues/9509#issuecomment-951546580
  54. # Shrink GPU memory after execution
  55. self.run_options = ort.RunOptions()
  56. if ort.get_device() == "GPU":
  57. options = ort.SessionOptions()
  58. options.enable_cpu_mem_arena = False
  59. cuda_provider_options = {
  60. "device_id": 0, # Use specific GPU
  61. "gpu_mem_limit": 512 * 1024 * 1024, # Limit gpu memory
  62. "arena_extend_strategy": "kNextPowerOfTwo", # gpu memory allocation strategy
  63. }
  64. self.ort_sess = ort.InferenceSession(
  65. model_file_path, options=options,
  66. providers=['CUDAExecutionProvider'],
  67. provider_options=[cuda_provider_options]
  68. )
  69. self.run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:0")
  70. logging.info(f"Recognizer {task_name} uses GPU")
  71. else:
  72. self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
  73. self.run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "cpu")
  74. logging.info(f"Recognizer {task_name} uses CPU")
  75. self.input_names = [node.name for node in self.ort_sess.get_inputs()]
  76. self.output_names = [node.name for node in self.ort_sess.get_outputs()]
  77. self.input_shape = self.ort_sess.get_inputs()[0].shape[2:4]
  78. self.label_list = label_list
  79. @staticmethod
  80. def sort_Y_firstly(arr, threashold):
  81. # sort using y1 first and then x1
  82. arr = sorted(arr, key=lambda r: (r["top"], r["x0"]))
  83. for i in range(len(arr) - 1):
  84. for j in range(i, -1, -1):
  85. # restore the order using th
  86. if abs(arr[j + 1]["top"] - arr[j]["top"]) < threashold \
  87. and arr[j + 1]["x0"] < arr[j]["x0"]:
  88. tmp = deepcopy(arr[j])
  89. arr[j] = deepcopy(arr[j + 1])
  90. arr[j + 1] = deepcopy(tmp)
  91. return arr
  92. @staticmethod
  93. def sort_X_firstly(arr, threashold, copy=True):
  94. # sort using y1 first and then x1
  95. arr = sorted(arr, key=lambda r: (r["x0"], r["top"]))
  96. for i in range(len(arr) - 1):
  97. for j in range(i, -1, -1):
  98. # restore the order using th
  99. if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \
  100. and arr[j + 1]["top"] < arr[j]["top"]:
  101. tmp = deepcopy(arr[j]) if copy else arr[j]
  102. arr[j] = deepcopy(arr[j + 1]) if copy else arr[j + 1]
  103. arr[j + 1] = deepcopy(tmp) if copy else tmp
  104. return arr
  105. @staticmethod
  106. def sort_C_firstly(arr, thr=0):
  107. # sort using y1 first and then x1
  108. # sorted(arr, key=lambda r: (r["x0"], r["top"]))
  109. arr = Recognizer.sort_X_firstly(arr, thr)
  110. for i in range(len(arr) - 1):
  111. for j in range(i, -1, -1):
  112. # restore the order using th
  113. if "C" not in arr[j] or "C" not in arr[j + 1]:
  114. continue
  115. if arr[j + 1]["C"] < arr[j]["C"] \
  116. or (
  117. arr[j + 1]["C"] == arr[j]["C"]
  118. and arr[j + 1]["top"] < arr[j]["top"]
  119. ):
  120. tmp = arr[j]
  121. arr[j] = arr[j + 1]
  122. arr[j + 1] = tmp
  123. return arr
  124. return sorted(arr, key=lambda r: (r.get("C", r["x0"]), r["top"]))
  125. @staticmethod
  126. def sort_R_firstly(arr, thr=0):
  127. # sort using y1 first and then x1
  128. # sorted(arr, key=lambda r: (r["top"], r["x0"]))
  129. arr = Recognizer.sort_Y_firstly(arr, thr)
  130. for i in range(len(arr) - 1):
  131. for j in range(i, -1, -1):
  132. if "R" not in arr[j] or "R" not in arr[j + 1]:
  133. continue
  134. if arr[j + 1]["R"] < arr[j]["R"] \
  135. or (
  136. arr[j + 1]["R"] == arr[j]["R"]
  137. and arr[j + 1]["x0"] < arr[j]["x0"]
  138. ):
  139. tmp = arr[j]
  140. arr[j] = arr[j + 1]
  141. arr[j + 1] = tmp
  142. return arr
  143. @staticmethod
  144. def overlapped_area(a, b, ratio=True):
  145. tp, btm, x0, x1 = a["top"], a["bottom"], a["x0"], a["x1"]
  146. if b["x0"] > x1 or b["x1"] < x0:
  147. return 0
  148. if b["bottom"] < tp or b["top"] > btm:
  149. return 0
  150. x0_ = max(b["x0"], x0)
  151. x1_ = min(b["x1"], x1)
  152. assert x0_ <= x1_, "Bbox mismatch! T:{},B:{},X0:{},X1:{} ==> {}".format(
  153. tp, btm, x0, x1, b)
  154. tp_ = max(b["top"], tp)
  155. btm_ = min(b["bottom"], btm)
  156. assert tp_ <= btm_, "Bbox mismatch! T:{},B:{},X0:{},X1:{} => {}".format(
  157. tp, btm, x0, x1, b)
  158. ov = (btm_ - tp_) * (x1_ - x0_) if x1 - \
  159. x0 != 0 and btm - tp != 0 else 0
  160. if ov > 0 and ratio:
  161. ov /= (x1 - x0) * (btm - tp)
  162. return ov
  163. @staticmethod
  164. def layouts_cleanup(boxes, layouts, far=2, thr=0.7):
  165. def notOverlapped(a, b):
  166. return any([a["x1"] < b["x0"],
  167. a["x0"] > b["x1"],
  168. a["bottom"] < b["top"],
  169. a["top"] > b["bottom"]])
  170. i = 0
  171. while i + 1 < len(layouts):
  172. j = i + 1
  173. while j < min(i + far, len(layouts)) \
  174. and (layouts[i].get("type", "") != layouts[j].get("type", "")
  175. or notOverlapped(layouts[i], layouts[j])):
  176. j += 1
  177. if j >= min(i + far, len(layouts)):
  178. i += 1
  179. continue
  180. if Recognizer.overlapped_area(layouts[i], layouts[j]) < thr \
  181. and Recognizer.overlapped_area(layouts[j], layouts[i]) < thr:
  182. i += 1
  183. continue
  184. if layouts[i].get("score") and layouts[j].get("score"):
  185. if layouts[i]["score"] > layouts[j]["score"]:
  186. layouts.pop(j)
  187. else:
  188. layouts.pop(i)
  189. continue
  190. area_i, area_i_1 = 0, 0
  191. for b in boxes:
  192. if not notOverlapped(b, layouts[i]):
  193. area_i += Recognizer.overlapped_area(b, layouts[i], False)
  194. if not notOverlapped(b, layouts[j]):
  195. area_i_1 += Recognizer.overlapped_area(b, layouts[j], False)
  196. if area_i > area_i_1:
  197. layouts.pop(j)
  198. else:
  199. layouts.pop(i)
  200. return layouts
  201. def create_inputs(self, imgs, im_info):
  202. """generate input for different model type
  203. Args:
  204. imgs (list(numpy)): list of images (np.ndarray)
  205. im_info (list(dict)): list of image info
  206. Returns:
  207. inputs (dict): input of model
  208. """
  209. inputs = {}
  210. im_shape = []
  211. scale_factor = []
  212. if len(imgs) == 1:
  213. inputs['image'] = np.array((imgs[0],)).astype('float32')
  214. inputs['im_shape'] = np.array(
  215. (im_info[0]['im_shape'],)).astype('float32')
  216. inputs['scale_factor'] = np.array(
  217. (im_info[0]['scale_factor'],)).astype('float32')
  218. return inputs
  219. for e in im_info:
  220. im_shape.append(np.array((e['im_shape'],)).astype('float32'))
  221. scale_factor.append(np.array((e['scale_factor'],)).astype('float32'))
  222. inputs['im_shape'] = np.concatenate(im_shape, axis=0)
  223. inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
  224. imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
  225. max_shape_h = max([e[0] for e in imgs_shape])
  226. max_shape_w = max([e[1] for e in imgs_shape])
  227. padding_imgs = []
  228. for img in imgs:
  229. im_c, im_h, im_w = img.shape[:]
  230. padding_im = np.zeros(
  231. (im_c, max_shape_h, max_shape_w), dtype=np.float32)
  232. padding_im[:, :im_h, :im_w] = img
  233. padding_imgs.append(padding_im)
  234. inputs['image'] = np.stack(padding_imgs, axis=0)
  235. return inputs
  236. @staticmethod
  237. def find_overlapped(box, boxes_sorted_by_y, naive=False):
  238. if not boxes_sorted_by_y:
  239. return
  240. bxs = boxes_sorted_by_y
  241. s, e, ii = 0, len(bxs), 0
  242. while s < e and not naive:
  243. ii = (e + s) // 2
  244. pv = bxs[ii]
  245. if box["bottom"] < pv["top"]:
  246. e = ii
  247. continue
  248. if box["top"] > pv["bottom"]:
  249. s = ii + 1
  250. continue
  251. break
  252. while s < ii:
  253. if box["top"] > bxs[s]["bottom"]:
  254. s += 1
  255. break
  256. while e - 1 > ii:
  257. if box["bottom"] < bxs[e - 1]["top"]:
  258. e -= 1
  259. break
  260. max_overlaped_i, max_overlaped = None, 0
  261. for i in range(s, e):
  262. ov = Recognizer.overlapped_area(bxs[i], box)
  263. if ov <= max_overlaped:
  264. continue
  265. max_overlaped_i = i
  266. max_overlaped = ov
  267. return max_overlaped_i
  268. @staticmethod
  269. def find_horizontally_tightest_fit(box, boxes):
  270. if not boxes:
  271. return
  272. min_dis, min_i = 1000000, None
  273. for i,b in enumerate(boxes):
  274. if box.get("layoutno", "0") != b.get("layoutno", "0"):
  275. continue
  276. dis = min(abs(box["x0"] - b["x0"]), abs(box["x1"] - b["x1"]), abs(box["x0"]+box["x1"] - b["x1"] - b["x0"])/2)
  277. if dis < min_dis:
  278. min_i = i
  279. min_dis = dis
  280. return min_i
  281. @staticmethod
  282. def find_overlapped_with_threashold(box, boxes, thr=0.3):
  283. if not boxes:
  284. return
  285. max_overlapped_i, max_overlapped, _max_overlapped = None, thr, 0
  286. s, e = 0, len(boxes)
  287. for i in range(s, e):
  288. ov = Recognizer.overlapped_area(box, boxes[i])
  289. _ov = Recognizer.overlapped_area(boxes[i], box)
  290. if (ov, _ov) < (max_overlapped, _max_overlapped):
  291. continue
  292. max_overlapped_i = i
  293. max_overlapped = ov
  294. _max_overlapped = _ov
  295. return max_overlapped_i
  296. def preprocess(self, image_list):
  297. inputs = []
  298. if "scale_factor" in self.input_names:
  299. preprocess_ops = []
  300. for op_info in [
  301. {'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
  302. {'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
  303. {'type': 'Permute'},
  304. {'stride': 32, 'type': 'PadStride'}
  305. ]:
  306. new_op_info = op_info.copy()
  307. op_type = new_op_info.pop('type')
  308. preprocess_ops.append(getattr(operators, op_type)(**new_op_info))
  309. for im_path in image_list:
  310. im, im_info = preprocess(im_path, preprocess_ops)
  311. inputs.append({"image": np.array((im,)).astype('float32'),
  312. "scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
  313. else:
  314. hh, ww = self.input_shape
  315. for img in image_list:
  316. h, w = img.shape[:2]
  317. img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
  318. img = cv2.resize(np.array(img).astype('float32'), (ww, hh))
  319. # Scale input pixel values to 0 to 1
  320. img /= 255.0
  321. img = img.transpose(2, 0, 1)
  322. img = img[np.newaxis, :, :, :].astype(np.float32)
  323. inputs.append({self.input_names[0]: img, "scale_factor": [w/ww, h/hh]})
  324. return inputs
  325. def postprocess(self, boxes, inputs, thr):
  326. if "scale_factor" in self.input_names:
  327. bb = []
  328. for b in boxes:
  329. clsid, bbox, score = int(b[0]), b[2:], b[1]
  330. if score < thr:
  331. continue
  332. if clsid >= len(self.label_list):
  333. continue
  334. bb.append({
  335. "type": self.label_list[clsid].lower(),
  336. "bbox": [float(t) for t in bbox.tolist()],
  337. "score": float(score)
  338. })
  339. return bb
  340. def xywh2xyxy(x):
  341. # [x, y, w, h] to [x1, y1, x2, y2]
  342. y = np.copy(x)
  343. y[:, 0] = x[:, 0] - x[:, 2] / 2
  344. y[:, 1] = x[:, 1] - x[:, 3] / 2
  345. y[:, 2] = x[:, 0] + x[:, 2] / 2
  346. y[:, 3] = x[:, 1] + x[:, 3] / 2
  347. return y
  348. def compute_iou(box, boxes):
  349. # Compute xmin, ymin, xmax, ymax for both boxes
  350. xmin = np.maximum(box[0], boxes[:, 0])
  351. ymin = np.maximum(box[1], boxes[:, 1])
  352. xmax = np.minimum(box[2], boxes[:, 2])
  353. ymax = np.minimum(box[3], boxes[:, 3])
  354. # Compute intersection area
  355. intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
  356. # Compute union area
  357. box_area = (box[2] - box[0]) * (box[3] - box[1])
  358. boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
  359. union_area = box_area + boxes_area - intersection_area
  360. # Compute IoU
  361. iou = intersection_area / union_area
  362. return iou
  363. def iou_filter(boxes, scores, iou_threshold):
  364. sorted_indices = np.argsort(scores)[::-1]
  365. keep_boxes = []
  366. while sorted_indices.size > 0:
  367. # Pick the last box
  368. box_id = sorted_indices[0]
  369. keep_boxes.append(box_id)
  370. # Compute IoU of the picked box with the rest
  371. ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
  372. # Remove boxes with IoU over the threshold
  373. keep_indices = np.where(ious < iou_threshold)[0]
  374. # print(keep_indices.shape, sorted_indices.shape)
  375. sorted_indices = sorted_indices[keep_indices + 1]
  376. return keep_boxes
  377. boxes = np.squeeze(boxes).T
  378. # Filter out object confidence scores below threshold
  379. scores = np.max(boxes[:, 4:], axis=1)
  380. boxes = boxes[scores > thr, :]
  381. scores = scores[scores > thr]
  382. if len(boxes) == 0:
  383. return []
  384. # Get the class with the highest confidence
  385. class_ids = np.argmax(boxes[:, 4:], axis=1)
  386. boxes = boxes[:, :4]
  387. input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]])
  388. boxes = np.multiply(boxes, input_shape, dtype=np.float32)
  389. boxes = xywh2xyxy(boxes)
  390. unique_class_ids = np.unique(class_ids)
  391. indices = []
  392. for class_id in unique_class_ids:
  393. class_indices = np.where(class_ids == class_id)[0]
  394. class_boxes = boxes[class_indices, :]
  395. class_scores = scores[class_indices]
  396. class_keep_boxes = iou_filter(class_boxes, class_scores, 0.2)
  397. indices.extend(class_indices[class_keep_boxes])
  398. return [{
  399. "type": self.label_list[class_ids[i]].lower(),
  400. "bbox": [float(t) for t in boxes[i].tolist()],
  401. "score": float(scores[i])
  402. } for i in indices]
  403. def __call__(self, image_list, thr=0.7, batch_size=16):
  404. res = []
  405. imgs = []
  406. for i in range(len(image_list)):
  407. if not isinstance(image_list[i], np.ndarray):
  408. imgs.append(np.array(image_list[i]))
  409. else:
  410. imgs.append(image_list[i])
  411. batch_loop_cnt = math.ceil(float(len(imgs)) / batch_size)
  412. for i in range(batch_loop_cnt):
  413. start_index = i * batch_size
  414. end_index = min((i + 1) * batch_size, len(imgs))
  415. batch_image_list = imgs[start_index:end_index]
  416. inputs = self.preprocess(batch_image_list)
  417. logging.debug("preprocess")
  418. for ins in inputs:
  419. bb = self.postprocess(self.ort_sess.run(None, {k:v for k,v in ins.items() if k in self.input_names}, self.run_options)[0], ins, thr)
  420. res.append(bb)
  421. #seeit.save_results(image_list, res, self.label_list, threshold=thr)
  422. return res