| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- import copy
- import random
- import re
- from io import BytesIO
- from xpinyin import Pinyin
- import numpy as np
- import pandas as pd
- from nltk import word_tokenize
- from openpyxl import load_workbook
- from dateutil.parser import parse as datetime_parse
- from rag.parser import is_english, tokenize
- from rag.nlp import huqie, stemmer
-
-
- class Excel(object):
- def __call__(self, fnm, binary=None, callback=None):
- if not binary:
- wb = load_workbook(fnm)
- else:
- wb = load_workbook(BytesIO(binary))
- total = 0
- for sheetname in wb.sheetnames:
- total += len(list(wb[sheetname].rows))
-
- res, fails, done = [], [], 0
- for sheetname in wb.sheetnames:
- ws = wb[sheetname]
- rows = list(ws.rows)
- headers = [cell.value for cell in rows[0]]
- missed = set([i for i,h in enumerate(headers) if h is None])
- headers = [cell.value for i,cell in enumerate(rows[0]) if i not in missed]
- data = []
- for i, r in enumerate(rows[1:]):
- row = [cell.value for ii,cell in enumerate(r) if ii not in missed]
- if len(row) != len(headers):
- fails.append(str(i))
- continue
- data.append(row)
- done += 1
- if done % 999 == 0:
- callback(done * 0.6/total, ("Extract records: {}".format(len(res)) + (f"{len(fails)} failure({sheetname}), line: %s..."%(",".join(fails[:3])) if fails else "")))
- res.append(pd.DataFrame(np.array(data), columns=headers))
-
- callback(0.6, ("Extract records: {}. ".format(done) + (
- f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
- return res
-
-
- def trans_datatime(s):
- try:
- return datetime_parse(s.strip()).strftime("%Y-%m-%dT%H:%M:%S")
- except Exception as e:
- pass
-
-
- def trans_bool(s):
- if re.match(r"(true|yes|是)$", str(s).strip(), flags=re.IGNORECASE): return ["yes", "是"]
- if re.match(r"(false|no|否)$", str(s).strip(), flags=re.IGNORECASE): return ["no", "否"]
-
-
- def column_data_type(arr):
- uni = len(set([a for a in arr if a is not None]))
- counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
- trans = {t:f for f,t in [(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
- for a in arr:
- if a is None:continue
- if re.match(r"[+-]?[0-9]+(\.0+)?$", str(a).replace("%%", "")):
- counts["int"] += 1
- elif re.match(r"[+-]?[0-9.]+$", str(a).replace("%%", "")):
- counts["float"] += 1
- elif re.match(r"(true|false|yes|no|是|否)$", str(a), flags=re.IGNORECASE):
- counts["bool"] += 1
- elif trans_datatime(str(a)):
- counts["datetime"] += 1
- else: counts["text"] += 1
- counts = sorted(counts.items(), key=lambda x: x[1]*-1)
- ty = counts[0][0]
- for i in range(len(arr)):
- if arr[i] is None:continue
- try:
- arr[i] = trans[ty](str(arr[i]))
- except Exception as e:
- arr[i] = None
- if ty == "text":
- if len(arr) > 128 and uni/len(arr) < 0.1:
- ty = "keyword"
- return arr, ty
-
-
- def chunk(filename, binary=None, callback=None, **kwargs):
- dfs = []
- if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
- callback(0.1, "Start to parse.")
- excel_parser = Excel()
- dfs = excel_parser(filename, binary, callback)
- elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
- callback(0.1, "Start to parse.")
- txt = ""
- if binary:
- txt = binary.decode("utf-8")
- else:
- with open(filename, "r") as f:
- while True:
- l = f.readline()
- if not l: break
- txt += l
- lines = txt.split("\n")
- fails = []
- headers = lines[0].split(kwargs.get("delimiter", "\t"))
- rows = []
- for i, line in enumerate(lines[1:]):
- row = [l for l in line.split(kwargs.get("delimiter", "\t"))]
- if len(row) != len(headers):
- fails.append(str(i))
- continue
- rows.append(row)
- if len(rows) % 999 == 0:
- callback(len(rows) * 0.6 / len(lines), ("Extract records: {}".format(len(rows)) + (
- f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
-
- callback(0.6, ("Extract records: {}".format(len(rows)) + (
- f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
-
- dfs = [pd.DataFrame(np.array(rows), columns=headers)]
-
- else: raise NotImplementedError("file type not supported yet(excel, text, csv supported)")
-
- res = []
- PY = Pinyin()
- fieds_map = {"text": "_tks", "int": "_int", "keyword": "_kwd", "float": "_flt", "datetime": "_dt", "bool": "_kwd"}
- for df in dfs:
- for n in ["id", "_id", "index", "idx"]:
- if n in df.columns:del df[n]
- clmns = df.columns.values
- txts = list(copy.deepcopy(clmns))
- py_clmns = [PY.get_pinyins(n)[0].replace("-", "_") for n in clmns]
- clmn_tys = []
- for j in range(len(clmns)):
- cln,ty = column_data_type(df[clmns[j]])
- clmn_tys.append(ty)
- df[clmns[j]] = cln
- if ty == "text": txts.extend([str(c) for c in cln if c])
- clmns_map = [(py_clmns[j] + fieds_map[clmn_tys[j]], clmns[j]) for i in range(len(clmns))]
- # TODO: set this column map to KB parser configuration
-
- eng = is_english(txts)
- for ii,row in df.iterrows():
- d = {}
- row_txt = []
- for j in range(len(clmns)):
- if row[clmns[j]] is None:continue
- fld = clmns_map[j][0]
- d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else huqie.qie(row[clmns[j]])
- row_txt.append("{}:{}".format(clmns[j], row[clmns[j]]))
- if not row_txt:continue
- tokenize(d, "; ".join(row_txt), eng)
- print(d)
- res.append(d)
- callback(0.6, "")
-
- return res
-
-
-
- if __name__== "__main__":
- import sys
- def dummy(a, b):
- pass
- chunk(sys.argv[1], callback=dummy)
-
|