Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. import copy
  2. import random
  3. import re
  4. import numpy as np
  5. from rag.parser import bullets_category, BULLET_PATTERN, is_english, tokenize, remove_contents_table, \
  6. hierarchical_merge, make_colon_as_title, naive_merge, random_choices
  7. from rag.nlp import huqie
  8. from rag.parser.docx_parser import HuDocxParser
  9. from rag.parser.pdf_parser import HuParser
  10. class Pdf(HuParser):
  11. def __call__(self, filename, binary=None, from_page=0,
  12. to_page=100000, zoomin=3, callback=None):
  13. self.__images__(
  14. filename if not binary else binary,
  15. zoomin,
  16. from_page,
  17. to_page)
  18. callback(0.1, "OCR finished")
  19. from timeit import default_timer as timer
  20. start = timer()
  21. self._layouts_paddle(zoomin)
  22. callback(0.47, "Layout analysis finished")
  23. print("paddle layouts:", timer() - start)
  24. self._table_transformer_job(zoomin)
  25. callback(0.68, "Table analysis finished")
  26. self._text_merge()
  27. self._concat_downward(concat_between_pages=False)
  28. self._filter_forpages()
  29. self._merge_with_same_bullet()
  30. callback(0.75, "Text merging finished.")
  31. tbls = self._extract_table_figure(True, zoomin, False)
  32. callback(0.8, "Text extraction finished")
  33. return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes], tbls
  34. def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
  35. doc = {
  36. "docnm_kwd": filename,
  37. "title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
  38. }
  39. doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
  40. pdf_parser = None
  41. sections,tbls = [], []
  42. if re.search(r"\.docx?$", filename, re.IGNORECASE):
  43. callback(0.1, "Start to parse.")
  44. doc_parser = HuDocxParser()
  45. # TODO: table of contents need to be removed
  46. sections, tbls = doc_parser(binary if binary else filename, from_page=from_page, to_page=to_page)
  47. remove_contents_table(sections, eng=is_english(random_choices([t for t,_ in sections], k=200)))
  48. callback(0.8, "Finish parsing.")
  49. elif re.search(r"\.pdf$", filename, re.IGNORECASE):
  50. pdf_parser = Pdf()
  51. sections,tbls = pdf_parser(filename if not binary else binary,
  52. from_page=from_page, to_page=to_page, callback=callback)
  53. elif re.search(r"\.txt$", filename, re.IGNORECASE):
  54. callback(0.1, "Start to parse.")
  55. txt = ""
  56. if binary:txt = binary.decode("utf-8")
  57. else:
  58. with open(filename, "r") as f:
  59. while True:
  60. l = f.readline()
  61. if not l:break
  62. txt += l
  63. sections = txt.split("\n")
  64. sections = [(l,"") for l in sections if l]
  65. remove_contents_table(sections, eng = is_english(random_choices([t for t,_ in sections], k=200)))
  66. callback(0.8, "Finish parsing.")
  67. else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
  68. make_colon_as_title(sections)
  69. bull = bullets_category([t for t in random_choices([t for t,_ in sections], k=100)])
  70. if bull >= 0: cks = hierarchical_merge(bull, sections, 3)
  71. else: cks = naive_merge(sections, kwargs.get("chunk_token_num", 256), kwargs.get("delimer", "\n。;!?"))
  72. sections = [t for t, _ in sections]
  73. # is it English
  74. eng = is_english(random_choices(sections, k=218))
  75. res = []
  76. # add tables
  77. for img, rows in tbls:
  78. bs = 10
  79. de = ";" if eng else ";"
  80. for i in range(0, len(rows), bs):
  81. d = copy.deepcopy(doc)
  82. r = de.join(rows[i:i + bs])
  83. r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
  84. tokenize(d, r, eng)
  85. d["image"] = img
  86. res.append(d)
  87. print("TABLE", d["content_with_weight"])
  88. # wrap up to es documents
  89. for ck in cks:
  90. d = copy.deepcopy(doc)
  91. ck = "\n".join(ck)
  92. if pdf_parser:
  93. d["image"] = pdf_parser.crop(ck)
  94. ck = pdf_parser.remove_tag(ck)
  95. tokenize(d, ck, eng)
  96. res.append(d)
  97. return res
  98. if __name__ == "__main__":
  99. import sys
  100. def dummy(a, b):
  101. pass
  102. chunk(sys.argv[1], from_page=1, to_page=10, callback=dummy)