Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

llm_app.py 11KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. from flask import request
  17. from flask_login import login_required, current_user
  18. from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
  19. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  20. from api.db import StatusEnum, LLMType
  21. from api.db.db_models import TenantLLM
  22. from api.utils.api_utils import get_json_result
  23. from rag.llm import EmbeddingModel, ChatModel, RerankModel,CvModel
  24. @manager.route('/factories', methods=['GET'])
  25. @login_required
  26. def factories():
  27. try:
  28. fac = LLMFactoriesService.get_all()
  29. return get_json_result(data=[f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]])
  30. except Exception as e:
  31. return server_error_response(e)
  32. @manager.route('/set_api_key', methods=['POST'])
  33. @login_required
  34. @validate_request("llm_factory", "api_key")
  35. def set_api_key():
  36. req = request.json
  37. # test if api key works
  38. chat_passed, embd_passed, rerank_passed = False, False, False
  39. factory = req["llm_factory"]
  40. msg = ""
  41. for llm in LLMService.query(fid=factory):
  42. if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
  43. mdl = EmbeddingModel[factory](
  44. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  45. try:
  46. arr, tc = mdl.encode(["Test if the api key is available"])
  47. if len(arr[0]) == 0 or tc == 0:
  48. raise Exception("Fail")
  49. embd_passed = True
  50. except Exception as e:
  51. msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
  52. elif not chat_passed and llm.model_type == LLMType.CHAT.value:
  53. mdl = ChatModel[factory](
  54. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  55. try:
  56. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
  57. {"temperature": 0.9,'max_tokens':50})
  58. if not tc:
  59. raise Exception(m)
  60. except Exception as e:
  61. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  62. e)
  63. chat_passed = True
  64. elif not rerank_passed and llm.model_type == LLMType.RERANK:
  65. mdl = RerankModel[factory](
  66. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  67. try:
  68. arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
  69. if len(arr) == 0 or tc == 0:
  70. raise Exception("Fail")
  71. except Exception as e:
  72. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  73. e)
  74. rerank_passed = True
  75. if msg:
  76. return get_data_error_result(retmsg=msg)
  77. llm = {
  78. "api_key": req["api_key"],
  79. "api_base": req.get("base_url", "")
  80. }
  81. for n in ["model_type", "llm_name"]:
  82. if n in req:
  83. llm[n] = req[n]
  84. if not TenantLLMService.filter_update(
  85. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory], llm):
  86. for llm in LLMService.query(fid=factory):
  87. TenantLLMService.save(
  88. tenant_id=current_user.id,
  89. llm_factory=factory,
  90. llm_name=llm.llm_name,
  91. model_type=llm.model_type,
  92. api_key=req["api_key"],
  93. api_base=req.get("base_url", "")
  94. )
  95. return get_json_result(data=True)
  96. @manager.route('/add_llm', methods=['POST'])
  97. @login_required
  98. @validate_request("llm_factory", "llm_name", "model_type")
  99. def add_llm():
  100. req = request.json
  101. factory = req["llm_factory"]
  102. if factory == "VolcEngine":
  103. # For VolcEngine, due to its special authentication method
  104. # Assemble volc_ak, volc_sk, endpoint_id into api_key
  105. temp = list(eval(req["llm_name"]).items())[0]
  106. llm_name = temp[0]
  107. endpoint_id = temp[1]
  108. api_key = '{' + f'"volc_ak": "{req.get("volc_ak", "")}", ' \
  109. f'"volc_sk": "{req.get("volc_sk", "")}", ' \
  110. f'"ep_id": "{endpoint_id}", ' + '}'
  111. elif factory == "Bedrock":
  112. # For Bedrock, due to its special authentication method
  113. # Assemble bedrock_ak, bedrock_sk, bedrock_region
  114. llm_name = req["llm_name"]
  115. api_key = '{' + f'"bedrock_ak": "{req.get("bedrock_ak", "")}", ' \
  116. f'"bedrock_sk": "{req.get("bedrock_sk", "")}", ' \
  117. f'"bedrock_region": "{req.get("bedrock_region", "")}", ' + '}'
  118. elif factory == "LocalAI":
  119. llm_name = req["llm_name"]+"___LocalAI"
  120. api_key = "xxxxxxxxxxxxxxx"
  121. else:
  122. llm_name = req["llm_name"]
  123. api_key = "xxxxxxxxxxxxxxx"
  124. llm = {
  125. "tenant_id": current_user.id,
  126. "llm_factory": factory,
  127. "model_type": req["model_type"],
  128. "llm_name": llm_name,
  129. "api_base": req.get("api_base", ""),
  130. "api_key": api_key
  131. }
  132. msg = ""
  133. if llm["model_type"] == LLMType.EMBEDDING.value:
  134. mdl = EmbeddingModel[factory](
  135. key=llm['api_key'] if factory in ["VolcEngine", "Bedrock"] else None,
  136. model_name=llm["llm_name"],
  137. base_url=llm["api_base"])
  138. try:
  139. arr, tc = mdl.encode(["Test if the api key is available"])
  140. if len(arr[0]) == 0 or tc == 0:
  141. raise Exception("Fail")
  142. except Exception as e:
  143. msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
  144. elif llm["model_type"] == LLMType.CHAT.value:
  145. mdl = ChatModel[factory](
  146. key=llm['api_key'] if factory in ["VolcEngine", "Bedrock"] else None,
  147. model_name=llm["llm_name"],
  148. base_url=llm["api_base"]
  149. )
  150. try:
  151. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
  152. "temperature": 0.9})
  153. if not tc:
  154. raise Exception(m)
  155. except Exception as e:
  156. msg += f"\nFail to access model({llm['llm_name']})." + str(
  157. e)
  158. elif llm["model_type"] == LLMType.RERANK:
  159. mdl = RerankModel[factory](
  160. key=None, model_name=llm["llm_name"], base_url=llm["api_base"]
  161. )
  162. try:
  163. arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!"])
  164. if len(arr) == 0 or tc == 0:
  165. raise Exception("Not known.")
  166. except Exception as e:
  167. msg += f"\nFail to access model({llm['llm_name']})." + str(
  168. e)
  169. elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
  170. mdl = CvModel[factory](
  171. key=None, model_name=llm["llm_name"], base_url=llm["api_base"]
  172. )
  173. try:
  174. img_url = (
  175. "https://upload.wikimedia.org/wikipedia/comm"
  176. "ons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/256"
  177. "0px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
  178. )
  179. m, tc = mdl.describe(img_url)
  180. if not tc:
  181. raise Exception(m)
  182. except Exception as e:
  183. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  184. else:
  185. # TODO: check other type of models
  186. pass
  187. if msg:
  188. return get_data_error_result(retmsg=msg)
  189. if not TenantLLMService.filter_update(
  190. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm["llm_name"]], llm):
  191. TenantLLMService.save(**llm)
  192. return get_json_result(data=True)
  193. @manager.route('/delete_llm', methods=['POST'])
  194. @login_required
  195. @validate_request("llm_factory", "llm_name")
  196. def delete_llm():
  197. req = request.json
  198. TenantLLMService.filter_delete(
  199. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]])
  200. return get_json_result(data=True)
  201. @manager.route('/my_llms', methods=['GET'])
  202. @login_required
  203. def my_llms():
  204. try:
  205. res = {}
  206. for o in TenantLLMService.get_my_llms(current_user.id):
  207. if o["llm_factory"] not in res:
  208. res[o["llm_factory"]] = {
  209. "tags": o["tags"],
  210. "llm": []
  211. }
  212. res[o["llm_factory"]]["llm"].append({
  213. "type": o["model_type"],
  214. "name": o["llm_name"],
  215. "used_token": o["used_tokens"]
  216. })
  217. return get_json_result(data=res)
  218. except Exception as e:
  219. return server_error_response(e)
  220. @manager.route('/list', methods=['GET'])
  221. @login_required
  222. def list_app():
  223. model_type = request.args.get("model_type")
  224. try:
  225. objs = TenantLLMService.query(tenant_id=current_user.id)
  226. facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
  227. llms = LLMService.get_all()
  228. llms = [m.to_dict()
  229. for m in llms if m.status == StatusEnum.VALID.value]
  230. for m in llms:
  231. m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in ["Youdao","FastEmbed", "BAAI"]
  232. llm_set = set([m["llm_name"] for m in llms])
  233. for o in objs:
  234. if not o.api_key:continue
  235. if o.llm_name in llm_set:continue
  236. llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
  237. res = {}
  238. for m in llms:
  239. if model_type and m["model_type"].find(model_type)<0:
  240. continue
  241. if m["fid"] not in res:
  242. res[m["fid"]] = []
  243. res[m["fid"]].append(m)
  244. return get_json_result(data=res)
  245. except Exception as e:
  246. return server_error_response(e)