| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import logging
- import os
- import time
- from abc import ABC
- from tavily import TavilyClient
- from agent.tools.base import ToolParamBase, ToolBase, ToolMeta
- from api.utils.api_utils import timeout
-
-
- class TavilySearchParam(ToolParamBase):
- """
- Define the Retrieval component parameters.
- """
-
- def __init__(self):
- self.meta:ToolMeta = {
- "name": "tavily_search",
- "description": """
- Tavily is a search engine optimized for LLMs, aimed at efficient, quick and persistent search results.
- When searching:
- - Start with specific query which should focus on just a single aspect.
- - Number of keywords in query should be less than 5.
- - Broaden search terms if needed
- - Cross-reference information from multiple sources
- """,
- "parameters": {
- "query": {
- "type": "string",
- "description": "The search keywords to execute with Tavily. The keywords should be the most important words/terms(includes synonyms) from the original request.",
- "default": "{sys.query}",
- "required": True
- },
- "topic": {
- "type": "string",
- "description": "default:general. The category of the search.news is useful for retrieving real-time updates, particularly about politics, sports, and major current events covered by mainstream media sources. general is for broader, more general-purpose searches that may include a wide range of sources.",
- "enum": ["general", "news"],
- "default": "general",
- "required": False,
- },
- "include_domains": {
- "type": "array",
- "description": "default:[]. A list of domains only from which the search results can be included.",
- "default": [],
- "items": {
- "type": "string",
- "description": "Domain name that must be included, e.g. www.yahoo.com"
- },
- "required": False
- },
- "exclude_domains": {
- "type": "array",
- "description": "default:[]. A list of domains from which the search results can not be included",
- "default": [],
- "items": {
- "type": "string",
- "description": "Domain name that must be excluded, e.g. www.yahoo.com"
- },
- "required": False
- },
- }
- }
- super().__init__()
- self.api_key = ""
- self.search_depth = "basic" # basic/advanced
- self.max_results = 6
- self.days = 14
- self.include_answer = False
- self.include_raw_content = False
- self.include_images = False
- self.include_image_descriptions = False
-
- def check(self):
- self.check_valid_value(self.topic, "Tavily topic: should be in 'general/news'", ["general", "news"])
- self.check_valid_value(self.search_depth, "Tavily search depth should be in 'basic/advanced'", ["basic", "advanced"])
- self.check_positive_integer(self.max_results, "Tavily max result number should be within [1, 20]")
- self.check_positive_integer(self.days, "Tavily days should be greater than 1")
-
- def get_input_form(self) -> dict[str, dict]:
- return {
- "query": {
- "name": "Query",
- "type": "line"
- }
- }
-
- class TavilySearch(ToolBase, ABC):
- component_name = "TavilySearch"
-
- @timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
- def _invoke(self, **kwargs):
- if not kwargs.get("query"):
- self.set_output("formalized_content", "")
- return ""
-
- self.tavily_client = TavilyClient(api_key=self._param.api_key)
- last_e = None
- for fld in ["search_depth", "topic", "max_results", "days", "include_answer", "include_raw_content", "include_images", "include_image_descriptions", "include_domains", "exclude_domains"]:
- if fld not in kwargs:
- kwargs[fld] = getattr(self._param, fld)
- for _ in range(self._param.max_retries+1):
- try:
- kwargs["include_images"] = False
- kwargs["include_raw_content"] = False
- res = self.tavily_client.search(**kwargs)
- self._retrieve_chunks(res["results"],
- get_title=lambda r: r["title"],
- get_url=lambda r: r["url"],
- get_content=lambda r: r["raw_content"] if r["raw_content"] else r["content"],
- get_score=lambda r: r["score"])
- self.set_output("json", res["results"])
- return self.output("formalized_content")
- except Exception as e:
- last_e = e
- logging.exception(f"Tavily error: {e}")
- time.sleep(self._param.delay_after_error)
- if last_e:
- self.set_output("_ERROR", str(last_e))
- return f"Tavily error: {last_e}"
-
- assert False, self.output()
-
- def thoughts(self) -> str:
- return """
- Keywords: {}
- Looking for the most relevant articles.
- """.format(self.get_input().get("query", "-_-!"))
-
-
- class TavilyExtractParam(ToolParamBase):
- """
- Define the Retrieval component parameters.
- """
-
- def __init__(self):
- self.meta:ToolMeta = {
- "name": "tavily_extract",
- "description": "Extract web page content from one or more specified URLs using Tavily Extract.",
- "parameters": {
- "urls": {
- "type": "array",
- "description": "The URLs to extract content from.",
- "default": "",
- "items": {
- "type": "string",
- "description": "The URL to extract content from, e.g. www.yahoo.com"
- },
- "required": True
- },
- "extract_depth": {
- "type": "string",
- "description": "The depth of the extraction process. advanced extraction retrieves more data, including tables and embedded content, with higher success but may increase latency.basic extraction costs 1 credit per 5 successful URL extractions, while advanced extraction costs 2 credits per 5 successful URL extractions.",
- "enum": ["basic", "advanced"],
- "default": "basic",
- "required": False,
- },
- "format": {
- "type": "string",
- "description": "The format of the extracted web page content. markdown returns content in markdown format. text returns plain text and may increase latency.",
- "enum": ["markdown", "text"],
- "default": "markdown",
- "required": False,
- }
- }
- }
- super().__init__()
- self.api_key = ""
- self.extract_depth = "basic" # basic/advanced
- self.urls = []
- self.format = "markdown"
- self.include_images = False
-
- def check(self):
- self.check_valid_value(self.extract_depth, "Tavily extract depth should be in 'basic/advanced'", ["basic", "advanced"])
- self.check_valid_value(self.format, "Tavily extract format should be in 'markdown/text'", ["markdown", "text"])
-
- def get_input_form(self) -> dict[str, dict]:
- return {
- "urls": {
- "name": "URLs",
- "type": "line"
- }
- }
-
- class TavilyExtract(ToolBase, ABC):
- component_name = "TavilyExtract"
-
- @timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
- def _invoke(self, **kwargs):
- self.tavily_client = TavilyClient(api_key=self._param.api_key)
- last_e = None
- for fld in ["urls", "extract_depth", "format"]:
- if fld not in kwargs:
- kwargs[fld] = getattr(self._param, fld)
- if kwargs.get("urls") and isinstance(kwargs["urls"], str):
- kwargs["urls"] = kwargs["urls"].split(",")
- for _ in range(self._param.max_retries+1):
- try:
- kwargs["include_images"] = False
- res = self.tavily_client.extract(**kwargs)
- self.set_output("json", res["results"])
- return self.output("json")
- except Exception as e:
- last_e = e
- logging.exception(f"Tavily error: {e}")
- if last_e:
- self.set_output("_ERROR", str(last_e))
- return f"Tavily error: {last_e}"
-
- assert False, self.output()
-
- def thoughts(self) -> str:
- return "Opened {}—pulling out the main text…".format(self.get_input().get("urls", "-_-!"))
|