| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import logging
 - from abc import ABC
 - from api.db import LLMType
 - from api.db.services.llm_service import LLMBundle
 - from agent.component import GenerateParam, Generate
 - from rag.utils import num_tokens_from_string, encoder
 - 
 - 
 - class RelevantParam(GenerateParam):
 - 
 -     """
 -     Define the Relevant component parameters.
 -     """
 -     def __init__(self):
 -         super().__init__()
 -         self.prompt = ""
 -         self.yes = ""
 -         self.no = ""
 - 
 -     def check(self):
 -         super().check()
 -         self.check_empty(self.yes, "[Relevant] 'Yes'")
 -         self.check_empty(self.no, "[Relevant] 'No'")
 - 
 -     def get_prompt(self):
 -         self.prompt = """
 -         You are a grader assessing relevance of a retrieved document to a user question. 
 -         It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
 -         If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. 
 -         Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
 -         No other words needed except 'yes' or 'no'.
 -         """
 -         return self.prompt
 - 
 - 
 - class Relevant(Generate, ABC):
 -     component_name = "Relevant"
 - 
 -     def _run(self, history, **kwargs):
 -         q = ""
 -         for r, c in self._canvas.history[::-1]:
 -             if r == "user":
 -                 q = c
 -                 break
 -         ans = self.get_input()
 -         ans = " - ".join(ans["content"]) if "content" in ans else ""
 -         if not ans:
 -             return Relevant.be_output(self._param.no)
 -         ans = "Documents: \n" + ans
 -         ans = f"Question: {q}\n" + ans
 -         chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
 - 
 -         if num_tokens_from_string(ans) >= chat_mdl.max_length - 4:
 -             ans = encoder.decode(encoder.encode(ans)[:chat_mdl.max_length - 4])
 - 
 -         ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": ans}],
 -                             self._param.gen_conf())
 - 
 -         logging.debug(ans)
 -         if ans.lower().find("yes") >= 0:
 -             return Relevant.be_output(self._param.yes)
 -         if ans.lower().find("no") >= 0:
 -             return Relevant.be_output(self._param.no)
 -         assert False, f"Relevant component got: {ans}"
 - 
 
 
  |