| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- from zhipuai import ZhipuAI
- from dashscope import Generation
- from abc import ABC
- from openai import OpenAI
- import openai
- from rag.nlp import is_english
- from rag.utils import num_tokens_from_string
-
-
- class Base(ABC):
- def __init__(self, key, model_name):
- pass
-
- def chat(self, system, history, gen_conf):
- raise NotImplementedError("Please implement encode method!")
-
-
- class GptTurbo(Base):
- def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
- if not base_url: base_url="https://api.openai.com/v1"
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- **gen_conf)
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, response.usage.completion_tokens
- except openai.APIError as e:
- return "**ERROR**: " + str(e), 0
-
-
- class MoonshotChat(GptTurbo):
- def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
- if not base_url: base_url="https://api.moonshot.cn/v1"
- self.client = OpenAI(
- api_key=key, base_url=base_url)
- self.model_name = model_name
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- **gen_conf)
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, response.usage.completion_tokens
- except openai.APIError as e:
- return "**ERROR**: " + str(e), 0
-
-
- class QWenChat(Base):
- def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
- import dashscope
- dashscope.api_key = key
- self.model_name = model_name
-
- def chat(self, system, history, gen_conf):
- from http import HTTPStatus
- if system:
- history.insert(0, {"role": "system", "content": system})
- response = Generation.call(
- self.model_name,
- messages=history,
- result_format='message',
- **gen_conf
- )
- ans = ""
- tk_count = 0
- if response.status_code == HTTPStatus.OK:
- ans += response.output.choices[0]['message']['content']
- tk_count += response.usage.output_tokens
- if response.output.choices[0].get("finish_reason", "") == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, tk_count
-
- return "**ERROR**: " + response.message, tk_count
-
-
- class ZhipuChat(Base):
- def __init__(self, key, model_name="glm-3-turbo", **kwargs):
- self.client = ZhipuAI(api_key=key)
- self.model_name = model_name
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- **gen_conf
- )
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
- [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, response.usage.completion_tokens
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
-
- class LocalLLM(Base):
- class RPCProxy:
- def __init__(self, host, port):
- self.host = host
- self.port = int(port)
- self.__conn()
-
- def __conn(self):
- from multiprocessing.connection import Client
- self._connection = Client(
- (self.host, self.port), authkey=b'infiniflow-token4kevinhu')
-
- def __getattr__(self, name):
- import pickle
-
- def do_rpc(*args, **kwargs):
- for _ in range(3):
- try:
- self._connection.send(
- pickle.dumps((name, args, kwargs)))
- return pickle.loads(self._connection.recv())
- except Exception as e:
- self.__conn()
- raise Exception("RPC connection lost!")
-
- return do_rpc
-
- def __init__(self, **kwargs):
- self.client = LocalLLM.RPCProxy("127.0.0.1", 7860)
-
- def chat(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- try:
- ans = self.client.chat(
- history,
- gen_conf
- )
- return ans, num_tokens_from_string(ans)
- except Exception as e:
- return "**ERROR**: " + str(e), 0
|