|
|
1 рік тому | |
|---|---|---|
| .github | 1 рік тому | |
| api | 1 рік тому | |
| conf | 1 рік тому | |
| deepdoc | 1 рік тому | |
| docker | 1 рік тому | |
| rag | 1 рік тому | |
| web | 1 рік тому | |
| .gitignore | 1 рік тому | |
| Dockerfile | 1 рік тому | |
| Dockerfile.cuda | 1 рік тому | |
| LICENSE | 1 рік тому | |
| README.md | 1 рік тому | |
| README_zh.md | 1 рік тому | |
| requirements.txt | 1 рік тому | |
<a href="https://demo.ragflow.io" target="_blank">
<img alt="Static Badge" src="https://img.shields.io/badge/RAGFLOW-LLM-white?&labelColor=dd0af7"></a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v1.0-brightgreen"
alt="docker pull ragflow:v1.0"></a>
<a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
<img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=7d09f1" alt="license">
RagFlow is a knowledge management platform built on custom-build document understanding engine and LLM, with reasoned and well-founded answers to your question. Clone this repository, you can deploy your own knowledge management platform to empower your business with AI.
Then, you need to check the following command:
$ sysctl vm.max_map_count
vm.max_map_count = 262144
If vm.max_map_count is not greater than 65535:
$ sudo sysctl -w vm.max_map_count=262144
Note that this change is reset after a system reboot. To render your change permanent, add or update the following line in /etc/sysctl.conf:
vm.max_map_count=262144
If you have not installed Docker on your local machine, see Install Docker Engine
- In service_conf.yaml, configuration of LLM in user_default_llm is strongly recommended. In user_default_llm of service_conf.yaml, you need to specify LLM factory and your own _APIKEY. If you do not have _APIKEY at the moment, you can specify it in Settings the next time you log in to the system.
RagFlow supports the flowing LLM factory, with more coming in the pipeline: OpenAI, Tongyi-Qianwen, ZHIPU-AI, Moonshot
$ git clone https://github.com/infiniflow/ragflow.git $ cd ragflow/docker $ docker compose up -dOR
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/
$ docker build -t infiniflow/ragflow:v1.0 .
$ cd ragflow/docker
$ docker compose up -d
The core image is about 15 GB in size and may take a while to load.
Check the server status after pulling all images and running up:
$ docker logs -f ragflow-server
Hallelujah! The following outputs indicates that you have successfully launched the system:
____ ______ __
/ __ \ ____ _ ____ _ / ____// /____ _ __
/ /_/ // __ `// __ `// /_ / // __ \| | /| / /
/ _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ /
/_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/
/____/
* Running on all addresses (0.0.0.0)
* Running on http://127.0.0.1:9380
* Running on http://172.22.0.5:9380
INFO:werkzeug:Press CTRL+C to quit
Open your browser, enter the IP address of your server, Hallelujah again!
The default serving port is 80, if you want to change that, refer to the docker-compose.yml and change the left part of ‘80:80’’.
If you need to change the default setting of the system when you deploy it. There several ways to configure it. Please refer to this README to manually update the configuration. After changing something, please run docker-compose up -d again.
If you want to change the basic setups, like port, password .etc., please refer to .env before starting up the system.
If you change anything in .env, please check service_conf.yaml which is a configuration of the back-end service and should be consistent with .env.
See the RagFlow Roadmap 2024
For those who’d like to contribute code, see our Contribution Guide.