Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

recognizer.py 17KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465
  1. #
  2. # Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. import os
  18. import math
  19. import numpy as np
  20. import cv2
  21. from copy import deepcopy
  22. import onnxruntime as ort
  23. from huggingface_hub import snapshot_download
  24. from api.utils.file_utils import get_project_base_directory
  25. from .operators import * # noqa: F403
  26. from .operators import preprocess
  27. from . import operators
  28. class Recognizer(object):
  29. def __init__(self, label_list, task_name, model_dir=None):
  30. """
  31. If you have trouble downloading HuggingFace models, -_^ this might help!!
  32. For Linux:
  33. export HF_ENDPOINT=https://hf-mirror.com
  34. For Windows:
  35. Good luck
  36. ^_-
  37. """
  38. if not model_dir:
  39. model_dir = os.path.join(
  40. get_project_base_directory(),
  41. "rag/res/deepdoc")
  42. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  43. if not os.path.exists(model_file_path):
  44. model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
  45. local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
  46. local_dir_use_symlinks=False)
  47. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  48. else:
  49. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  50. if not os.path.exists(model_file_path):
  51. raise ValueError("not find model file path {}".format(
  52. model_file_path))
  53. if False and ort.get_device() == "GPU":
  54. options = ort.SessionOptions()
  55. options.enable_cpu_mem_arena = False
  56. self.ort_sess = ort.InferenceSession(model_file_path, options=options, providers=[('CUDAExecutionProvider')])
  57. else:
  58. self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
  59. self.input_names = [node.name for node in self.ort_sess.get_inputs()]
  60. self.output_names = [node.name for node in self.ort_sess.get_outputs()]
  61. self.input_shape = self.ort_sess.get_inputs()[0].shape[2:4]
  62. self.label_list = label_list
  63. @staticmethod
  64. def sort_Y_firstly(arr, threashold):
  65. # sort using y1 first and then x1
  66. arr = sorted(arr, key=lambda r: (r["top"], r["x0"]))
  67. for i in range(len(arr) - 1):
  68. for j in range(i, -1, -1):
  69. # restore the order using th
  70. if abs(arr[j + 1]["top"] - arr[j]["top"]) < threashold \
  71. and arr[j + 1]["x0"] < arr[j]["x0"]:
  72. tmp = deepcopy(arr[j])
  73. arr[j] = deepcopy(arr[j + 1])
  74. arr[j + 1] = deepcopy(tmp)
  75. return arr
  76. @staticmethod
  77. def sort_X_firstly(arr, threashold, copy=True):
  78. # sort using y1 first and then x1
  79. arr = sorted(arr, key=lambda r: (r["x0"], r["top"]))
  80. for i in range(len(arr) - 1):
  81. for j in range(i, -1, -1):
  82. # restore the order using th
  83. if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \
  84. and arr[j + 1]["top"] < arr[j]["top"]:
  85. tmp = deepcopy(arr[j]) if copy else arr[j]
  86. arr[j] = deepcopy(arr[j + 1]) if copy else arr[j + 1]
  87. arr[j + 1] = deepcopy(tmp) if copy else tmp
  88. return arr
  89. @staticmethod
  90. def sort_C_firstly(arr, thr=0):
  91. # sort using y1 first and then x1
  92. # sorted(arr, key=lambda r: (r["x0"], r["top"]))
  93. arr = Recognizer.sort_X_firstly(arr, thr)
  94. for i in range(len(arr) - 1):
  95. for j in range(i, -1, -1):
  96. # restore the order using th
  97. if "C" not in arr[j] or "C" not in arr[j + 1]:
  98. continue
  99. if arr[j + 1]["C"] < arr[j]["C"] \
  100. or (
  101. arr[j + 1]["C"] == arr[j]["C"]
  102. and arr[j + 1]["top"] < arr[j]["top"]
  103. ):
  104. tmp = arr[j]
  105. arr[j] = arr[j + 1]
  106. arr[j + 1] = tmp
  107. return arr
  108. return sorted(arr, key=lambda r: (r.get("C", r["x0"]), r["top"]))
  109. @staticmethod
  110. def sort_R_firstly(arr, thr=0):
  111. # sort using y1 first and then x1
  112. # sorted(arr, key=lambda r: (r["top"], r["x0"]))
  113. arr = Recognizer.sort_Y_firstly(arr, thr)
  114. for i in range(len(arr) - 1):
  115. for j in range(i, -1, -1):
  116. if "R" not in arr[j] or "R" not in arr[j + 1]:
  117. continue
  118. if arr[j + 1]["R"] < arr[j]["R"] \
  119. or (
  120. arr[j + 1]["R"] == arr[j]["R"]
  121. and arr[j + 1]["x0"] < arr[j]["x0"]
  122. ):
  123. tmp = arr[j]
  124. arr[j] = arr[j + 1]
  125. arr[j + 1] = tmp
  126. return arr
  127. @staticmethod
  128. def overlapped_area(a, b, ratio=True):
  129. tp, btm, x0, x1 = a["top"], a["bottom"], a["x0"], a["x1"]
  130. if b["x0"] > x1 or b["x1"] < x0:
  131. return 0
  132. if b["bottom"] < tp or b["top"] > btm:
  133. return 0
  134. x0_ = max(b["x0"], x0)
  135. x1_ = min(b["x1"], x1)
  136. assert x0_ <= x1_, "Bbox mismatch! T:{},B:{},X0:{},X1:{} ==> {}".format(
  137. tp, btm, x0, x1, b)
  138. tp_ = max(b["top"], tp)
  139. btm_ = min(b["bottom"], btm)
  140. assert tp_ <= btm_, "Bbox mismatch! T:{},B:{},X0:{},X1:{} => {}".format(
  141. tp, btm, x0, x1, b)
  142. ov = (btm_ - tp_) * (x1_ - x0_) if x1 - \
  143. x0 != 0 and btm - tp != 0 else 0
  144. if ov > 0 and ratio:
  145. ov /= (x1 - x0) * (btm - tp)
  146. return ov
  147. @staticmethod
  148. def layouts_cleanup(boxes, layouts, far=2, thr=0.7):
  149. def notOverlapped(a, b):
  150. return any([a["x1"] < b["x0"],
  151. a["x0"] > b["x1"],
  152. a["bottom"] < b["top"],
  153. a["top"] > b["bottom"]])
  154. i = 0
  155. while i + 1 < len(layouts):
  156. j = i + 1
  157. while j < min(i + far, len(layouts)) \
  158. and (layouts[i].get("type", "") != layouts[j].get("type", "")
  159. or notOverlapped(layouts[i], layouts[j])):
  160. j += 1
  161. if j >= min(i + far, len(layouts)):
  162. i += 1
  163. continue
  164. if Recognizer.overlapped_area(layouts[i], layouts[j]) < thr \
  165. and Recognizer.overlapped_area(layouts[j], layouts[i]) < thr:
  166. i += 1
  167. continue
  168. if layouts[i].get("score") and layouts[j].get("score"):
  169. if layouts[i]["score"] > layouts[j]["score"]:
  170. layouts.pop(j)
  171. else:
  172. layouts.pop(i)
  173. continue
  174. area_i, area_i_1 = 0, 0
  175. for b in boxes:
  176. if not notOverlapped(b, layouts[i]):
  177. area_i += Recognizer.overlapped_area(b, layouts[i], False)
  178. if not notOverlapped(b, layouts[j]):
  179. area_i_1 += Recognizer.overlapped_area(b, layouts[j], False)
  180. if area_i > area_i_1:
  181. layouts.pop(j)
  182. else:
  183. layouts.pop(i)
  184. return layouts
  185. def create_inputs(self, imgs, im_info):
  186. """generate input for different model type
  187. Args:
  188. imgs (list(numpy)): list of images (np.ndarray)
  189. im_info (list(dict)): list of image info
  190. Returns:
  191. inputs (dict): input of model
  192. """
  193. inputs = {}
  194. im_shape = []
  195. scale_factor = []
  196. if len(imgs) == 1:
  197. inputs['image'] = np.array((imgs[0],)).astype('float32')
  198. inputs['im_shape'] = np.array(
  199. (im_info[0]['im_shape'],)).astype('float32')
  200. inputs['scale_factor'] = np.array(
  201. (im_info[0]['scale_factor'],)).astype('float32')
  202. return inputs
  203. for e in im_info:
  204. im_shape.append(np.array((e['im_shape'],)).astype('float32'))
  205. scale_factor.append(np.array((e['scale_factor'],)).astype('float32'))
  206. inputs['im_shape'] = np.concatenate(im_shape, axis=0)
  207. inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
  208. imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
  209. max_shape_h = max([e[0] for e in imgs_shape])
  210. max_shape_w = max([e[1] for e in imgs_shape])
  211. padding_imgs = []
  212. for img in imgs:
  213. im_c, im_h, im_w = img.shape[:]
  214. padding_im = np.zeros(
  215. (im_c, max_shape_h, max_shape_w), dtype=np.float32)
  216. padding_im[:, :im_h, :im_w] = img
  217. padding_imgs.append(padding_im)
  218. inputs['image'] = np.stack(padding_imgs, axis=0)
  219. return inputs
  220. @staticmethod
  221. def find_overlapped(box, boxes_sorted_by_y, naive=False):
  222. if not boxes_sorted_by_y:
  223. return
  224. bxs = boxes_sorted_by_y
  225. s, e, ii = 0, len(bxs), 0
  226. while s < e and not naive:
  227. ii = (e + s) // 2
  228. pv = bxs[ii]
  229. if box["bottom"] < pv["top"]:
  230. e = ii
  231. continue
  232. if box["top"] > pv["bottom"]:
  233. s = ii + 1
  234. continue
  235. break
  236. while s < ii:
  237. if box["top"] > bxs[s]["bottom"]:
  238. s += 1
  239. break
  240. while e - 1 > ii:
  241. if box["bottom"] < bxs[e - 1]["top"]:
  242. e -= 1
  243. break
  244. max_overlaped_i, max_overlaped = None, 0
  245. for i in range(s, e):
  246. ov = Recognizer.overlapped_area(bxs[i], box)
  247. if ov <= max_overlaped:
  248. continue
  249. max_overlaped_i = i
  250. max_overlaped = ov
  251. return max_overlaped_i
  252. @staticmethod
  253. def find_horizontally_tightest_fit(box, boxes):
  254. if not boxes:
  255. return
  256. min_dis, min_i = 1000000, None
  257. for i,b in enumerate(boxes):
  258. if box.get("layoutno", "0") != b.get("layoutno", "0"):
  259. continue
  260. dis = min(abs(box["x0"] - b["x0"]), abs(box["x1"] - b["x1"]), abs(box["x0"]+box["x1"] - b["x1"] - b["x0"])/2)
  261. if dis < min_dis:
  262. min_i = i
  263. min_dis = dis
  264. return min_i
  265. @staticmethod
  266. def find_overlapped_with_threashold(box, boxes, thr=0.3):
  267. if not boxes:
  268. return
  269. max_overlapped_i, max_overlapped, _max_overlapped = None, thr, 0
  270. s, e = 0, len(boxes)
  271. for i in range(s, e):
  272. ov = Recognizer.overlapped_area(box, boxes[i])
  273. _ov = Recognizer.overlapped_area(boxes[i], box)
  274. if (ov, _ov) < (max_overlapped, _max_overlapped):
  275. continue
  276. max_overlapped_i = i
  277. max_overlapped = ov
  278. _max_overlapped = _ov
  279. return max_overlapped_i
  280. def preprocess(self, image_list):
  281. inputs = []
  282. if "scale_factor" in self.input_names:
  283. preprocess_ops = []
  284. for op_info in [
  285. {'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
  286. {'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
  287. {'type': 'Permute'},
  288. {'stride': 32, 'type': 'PadStride'}
  289. ]:
  290. new_op_info = op_info.copy()
  291. op_type = new_op_info.pop('type')
  292. preprocess_ops.append(getattr(operators, op_type)(**new_op_info))
  293. for im_path in image_list:
  294. im, im_info = preprocess(im_path, preprocess_ops)
  295. inputs.append({"image": np.array((im,)).astype('float32'),
  296. "scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
  297. else:
  298. hh, ww = self.input_shape
  299. for img in image_list:
  300. h, w = img.shape[:2]
  301. img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
  302. img = cv2.resize(np.array(img).astype('float32'), (ww, hh))
  303. # Scale input pixel values to 0 to 1
  304. img /= 255.0
  305. img = img.transpose(2, 0, 1)
  306. img = img[np.newaxis, :, :, :].astype(np.float32)
  307. inputs.append({self.input_names[0]: img, "scale_factor": [w/ww, h/hh]})
  308. return inputs
  309. def postprocess(self, boxes, inputs, thr):
  310. if "scale_factor" in self.input_names:
  311. bb = []
  312. for b in boxes:
  313. clsid, bbox, score = int(b[0]), b[2:], b[1]
  314. if score < thr:
  315. continue
  316. if clsid >= len(self.label_list):
  317. continue
  318. bb.append({
  319. "type": self.label_list[clsid].lower(),
  320. "bbox": [float(t) for t in bbox.tolist()],
  321. "score": float(score)
  322. })
  323. return bb
  324. def xywh2xyxy(x):
  325. # [x, y, w, h] to [x1, y1, x2, y2]
  326. y = np.copy(x)
  327. y[:, 0] = x[:, 0] - x[:, 2] / 2
  328. y[:, 1] = x[:, 1] - x[:, 3] / 2
  329. y[:, 2] = x[:, 0] + x[:, 2] / 2
  330. y[:, 3] = x[:, 1] + x[:, 3] / 2
  331. return y
  332. def compute_iou(box, boxes):
  333. # Compute xmin, ymin, xmax, ymax for both boxes
  334. xmin = np.maximum(box[0], boxes[:, 0])
  335. ymin = np.maximum(box[1], boxes[:, 1])
  336. xmax = np.minimum(box[2], boxes[:, 2])
  337. ymax = np.minimum(box[3], boxes[:, 3])
  338. # Compute intersection area
  339. intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
  340. # Compute union area
  341. box_area = (box[2] - box[0]) * (box[3] - box[1])
  342. boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
  343. union_area = box_area + boxes_area - intersection_area
  344. # Compute IoU
  345. iou = intersection_area / union_area
  346. return iou
  347. def iou_filter(boxes, scores, iou_threshold):
  348. sorted_indices = np.argsort(scores)[::-1]
  349. keep_boxes = []
  350. while sorted_indices.size > 0:
  351. # Pick the last box
  352. box_id = sorted_indices[0]
  353. keep_boxes.append(box_id)
  354. # Compute IoU of the picked box with the rest
  355. ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
  356. # Remove boxes with IoU over the threshold
  357. keep_indices = np.where(ious < iou_threshold)[0]
  358. # print(keep_indices.shape, sorted_indices.shape)
  359. sorted_indices = sorted_indices[keep_indices + 1]
  360. return keep_boxes
  361. boxes = np.squeeze(boxes).T
  362. # Filter out object confidence scores below threshold
  363. scores = np.max(boxes[:, 4:], axis=1)
  364. boxes = boxes[scores > thr, :]
  365. scores = scores[scores > thr]
  366. if len(boxes) == 0:
  367. return []
  368. # Get the class with the highest confidence
  369. class_ids = np.argmax(boxes[:, 4:], axis=1)
  370. boxes = boxes[:, :4]
  371. input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]])
  372. boxes = np.multiply(boxes, input_shape, dtype=np.float32)
  373. boxes = xywh2xyxy(boxes)
  374. unique_class_ids = np.unique(class_ids)
  375. indices = []
  376. for class_id in unique_class_ids:
  377. class_indices = np.where(class_ids == class_id)[0]
  378. class_boxes = boxes[class_indices, :]
  379. class_scores = scores[class_indices]
  380. class_keep_boxes = iou_filter(class_boxes, class_scores, 0.2)
  381. indices.extend(class_indices[class_keep_boxes])
  382. return [{
  383. "type": self.label_list[class_ids[i]].lower(),
  384. "bbox": [float(t) for t in boxes[i].tolist()],
  385. "score": float(scores[i])
  386. } for i in indices]
  387. def __call__(self, image_list, thr=0.7, batch_size=16):
  388. res = []
  389. imgs = []
  390. for i in range(len(image_list)):
  391. if not isinstance(image_list[i], np.ndarray):
  392. imgs.append(np.array(image_list[i]))
  393. else:
  394. imgs.append(image_list[i])
  395. batch_loop_cnt = math.ceil(float(len(imgs)) / batch_size)
  396. for i in range(batch_loop_cnt):
  397. start_index = i * batch_size
  398. end_index = min((i + 1) * batch_size, len(imgs))
  399. batch_image_list = imgs[start_index:end_index]
  400. inputs = self.preprocess(batch_image_list)
  401. logging.debug("preprocess")
  402. for ins in inputs:
  403. bb = self.postprocess(self.ort_sess.run(None, {k:v for k,v in ins.items() if k in self.input_names})[0], ins, thr)
  404. res.append(bb)
  405. #seeit.save_results(image_list, res, self.label_list, threshold=thr)
  406. return res