| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import base64
- import io
- import json
- import os
- import re
- from abc import ABC
-
- import requests
- from openai import OpenAI
- from openai.lib.azure import AzureOpenAI
-
- from rag.utils import num_tokens_from_string
-
-
- class Base(ABC):
- def __init__(self, key, model_name, **kwargs):
- """
- Abstract base class constructor.
- Parameters are not stored; initialization is left to subclasses.
- """
- pass
-
- def transcription(self, audio, **kwargs):
- transcription = self.client.audio.transcriptions.create(model=self.model_name, file=audio, response_format="text")
- return transcription.text.strip(), num_tokens_from_string(transcription.text.strip())
-
- def audio2base64(self, audio):
- if isinstance(audio, bytes):
- return base64.b64encode(audio).decode("utf-8")
- if isinstance(audio, io.BytesIO):
- return base64.b64encode(audio.getvalue()).decode("utf-8")
- raise TypeError("The input audio file should be in binary format.")
-
-
- class GPTSeq2txt(Base):
- _FACTORY_NAME = "OpenAI"
-
- def __init__(self, key, model_name="whisper-1", base_url="https://api.openai.com/v1"):
- if not base_url:
- base_url = "https://api.openai.com/v1"
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
-
-
- class QWenSeq2txt(Base):
- _FACTORY_NAME = "Tongyi-Qianwen"
-
- def __init__(self, key, model_name="paraformer-realtime-8k-v1", **kwargs):
- import dashscope
-
- dashscope.api_key = key
- self.model_name = model_name
-
- def transcription(self, audio, format):
- from http import HTTPStatus
-
- from dashscope.audio.asr import Recognition
-
- recognition = Recognition(model=self.model_name, format=format, sample_rate=16000, callback=None)
- result = recognition.call(audio)
-
- ans = ""
- if result.status_code == HTTPStatus.OK:
- for sentence in result.get_sentence():
- ans += sentence.text.decode("utf-8") + "\n"
- return ans, num_tokens_from_string(ans)
-
- return "**ERROR**: " + result.message, 0
-
-
- class AzureSeq2txt(Base):
- _FACTORY_NAME = "Azure-OpenAI"
-
- def __init__(self, key, model_name, lang="Chinese", **kwargs):
- self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
- self.model_name = model_name
- self.lang = lang
-
-
- class XinferenceSeq2txt(Base):
- _FACTORY_NAME = "Xinference"
-
- def __init__(self, key, model_name="whisper-small", **kwargs):
- self.base_url = kwargs.get("base_url", None)
- self.model_name = model_name
- self.key = key
-
- def transcription(self, audio, language="zh", prompt=None, response_format="json", temperature=0.7):
- if isinstance(audio, str):
- audio_file = open(audio, "rb")
- audio_data = audio_file.read()
- audio_file_name = audio.split("/")[-1]
- else:
- audio_data = audio
- audio_file_name = "audio.wav"
-
- payload = {"model": self.model_name, "language": language, "prompt": prompt, "response_format": response_format, "temperature": temperature}
-
- files = {"file": (audio_file_name, audio_data, "audio/wav")}
-
- try:
- response = requests.post(f"{self.base_url}/v1/audio/transcriptions", files=files, data=payload)
- response.raise_for_status()
- result = response.json()
-
- if "text" in result:
- transcription_text = result["text"].strip()
- return transcription_text, num_tokens_from_string(transcription_text)
- else:
- return "**ERROR**: Failed to retrieve transcription.", 0
-
- except requests.exceptions.RequestException as e:
- return f"**ERROR**: {str(e)}", 0
-
-
- class TencentCloudSeq2txt(Base):
- _FACTORY_NAME = "Tencent Cloud"
-
- def __init__(self, key, model_name="16k_zh", base_url="https://asr.tencentcloudapi.com"):
- from tencentcloud.asr.v20190614 import asr_client
- from tencentcloud.common import credential
-
- key = json.loads(key)
- sid = key.get("tencent_cloud_sid", "")
- sk = key.get("tencent_cloud_sk", "")
- cred = credential.Credential(sid, sk)
- self.client = asr_client.AsrClient(cred, "")
- self.model_name = model_name
-
- def transcription(self, audio, max_retries=60, retry_interval=5):
- import time
-
- from tencentcloud.asr.v20190614 import models
- from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
- TencentCloudSDKException,
- )
-
- b64 = self.audio2base64(audio)
- try:
- # dispatch disk
- req = models.CreateRecTaskRequest()
- params = {
- "EngineModelType": self.model_name,
- "ChannelNum": 1,
- "ResTextFormat": 0,
- "SourceType": 1,
- "Data": b64,
- }
- req.from_json_string(json.dumps(params))
- resp = self.client.CreateRecTask(req)
-
- # loop query
- req = models.DescribeTaskStatusRequest()
- params = {"TaskId": resp.Data.TaskId}
- req.from_json_string(json.dumps(params))
- retries = 0
- while retries < max_retries:
- resp = self.client.DescribeTaskStatus(req)
- if resp.Data.StatusStr == "success":
- text = re.sub(r"\[\d+:\d+\.\d+,\d+:\d+\.\d+\]\s*", "", resp.Data.Result).strip()
- return text, num_tokens_from_string(text)
- elif resp.Data.StatusStr == "failed":
- return (
- "**ERROR**: Failed to retrieve speech recognition results.",
- 0,
- )
- else:
- time.sleep(retry_interval)
- retries += 1
- return "**ERROR**: Max retries exceeded. Task may still be processing.", 0
-
- except TencentCloudSDKException as e:
- return "**ERROR**: " + str(e), 0
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
-
- class GPUStackSeq2txt(Base):
- _FACTORY_NAME = "GPUStack"
-
- def __init__(self, key, model_name, base_url):
- if not base_url:
- raise ValueError("url cannot be None")
- if base_url.split("/")[-1] != "v1":
- base_url = os.path.join(base_url, "v1")
- self.base_url = base_url
- self.model_name = model_name
- self.key = key
-
-
- class GiteeSeq2txt(Base):
- _FACTORY_NAME = "GiteeAI"
-
- def __init__(self, key, model_name="whisper-1", base_url="https://ai.gitee.com/v1/"):
- if not base_url:
- base_url = "https://ai.gitee.com/v1/"
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
-
- class DeepInfraSeq2txt(Base):
- _FACTORY_NAME = "DeepInfra"
-
- def __init__(self, key, model_name, base_url="https://api.deepinfra.com/v1/openai", **kwargs):
- if not base_url:
- base_url = "https://api.deepinfra.com/v1/openai"
-
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
|