| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import json
- import logging
- import os
- import re
- import threading
- from abc import ABC
- from urllib.parse import urljoin
-
- import dashscope
- import google.generativeai as genai
- import numpy as np
- import requests
- from huggingface_hub import snapshot_download
- from ollama import Client
- from openai import OpenAI
- from zhipuai import ZhipuAI
-
- from api import settings
- from api.utils.file_utils import get_home_cache_dir
- from api.utils.log_utils import log_exception
- from rag.utils import num_tokens_from_string, truncate
-
-
- class Base(ABC):
- def __init__(self, key, model_name, **kwargs):
- """
- Constructor for abstract base class.
- Parameters are accepted for interface consistency but are not stored.
- Subclasses should implement their own initialization as needed.
- """
- pass
-
- def encode(self, texts: list):
- raise NotImplementedError("Please implement encode method!")
-
- def encode_queries(self, text: str):
- raise NotImplementedError("Please implement encode method!")
-
- def total_token_count(self, resp):
- try:
- return resp.usage.total_tokens
- except Exception:
- pass
- try:
- return resp["usage"]["total_tokens"]
- except Exception:
- pass
- return 0
-
-
- class DefaultEmbedding(Base):
- _FACTORY_NAME = "BAAI"
- _model = None
- _model_name = ""
- _model_lock = threading.Lock()
-
- def __init__(self, key, model_name, **kwargs):
- """
- If you have trouble downloading HuggingFace models, -_^ this might help!!
-
- For Linux:
- export HF_ENDPOINT=https://hf-mirror.com
-
- For Windows:
- Good luck
- ^_-
-
- """
- if not settings.LIGHTEN:
- input_cuda_visible_devices = None
- with DefaultEmbedding._model_lock:
- import torch
- from FlagEmbedding import FlagModel
- if "CUDA_VISIBLE_DEVICES" in os.environ:
- input_cuda_visible_devices = os.environ["CUDA_VISIBLE_DEVICES"]
- os.environ["CUDA_VISIBLE_DEVICES"] = "0" # handle some issues with multiple GPUs when initializing the model
-
- if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
- try:
- DefaultEmbedding._model = FlagModel(
- os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
- query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
- use_fp16=torch.cuda.is_available(),
- )
- DefaultEmbedding._model_name = model_name
- except Exception:
- model_dir = snapshot_download(
- repo_id="BAAI/bge-large-zh-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
- )
- DefaultEmbedding._model = FlagModel(model_dir, query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=torch.cuda.is_available())
- finally:
- if input_cuda_visible_devices:
- # restore CUDA_VISIBLE_DEVICES
- os.environ["CUDA_VISIBLE_DEVICES"] = input_cuda_visible_devices
- self._model = DefaultEmbedding._model
- self._model_name = DefaultEmbedding._model_name
-
- def encode(self, texts: list):
- batch_size = 16
- texts = [truncate(t, 2048) for t in texts]
- token_count = 0
- for t in texts:
- token_count += num_tokens_from_string(t)
- ress = None
- for i in range(0, len(texts), batch_size):
- if ress is None:
- ress = self._model.encode(texts[i : i + batch_size], convert_to_numpy=True)
- else:
- ress = np.concatenate((ress, self._model.encode(texts[i : i + batch_size], convert_to_numpy=True)), axis=0)
- return ress, token_count
-
- def encode_queries(self, text: str):
- token_count = num_tokens_from_string(text)
- return self._model.encode_queries([text], convert_to_numpy=False)[0][0].cpu().numpy(), token_count
-
-
- class OpenAIEmbed(Base):
- _FACTORY_NAME = "OpenAI"
-
- def __init__(self, key, model_name="text-embedding-ada-002", base_url="https://api.openai.com/v1"):
- if not base_url:
- base_url = "https://api.openai.com/v1"
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
-
- def encode(self, texts: list):
- # OpenAI requires batch size <=16
- batch_size = 16
- texts = [truncate(t, 8191) for t in texts]
- ress = []
- total_tokens = 0
- for i in range(0, len(texts), batch_size):
- res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
- try:
- ress.extend([d.embedding for d in res.data])
- total_tokens += self.total_token_count(res)
- except Exception as _e:
- log_exception(_e, res)
- return np.array(ress), total_tokens
-
- def encode_queries(self, text):
- res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name)
- return np.array(res.data[0].embedding), self.total_token_count(res)
-
-
- class LocalAIEmbed(Base):
- _FACTORY_NAME = "LocalAI"
-
- def __init__(self, key, model_name, base_url):
- if not base_url:
- raise ValueError("Local embedding model url cannot be None")
- base_url = urljoin(base_url, "v1")
- self.client = OpenAI(api_key="empty", base_url=base_url)
- self.model_name = model_name.split("___")[0]
-
- def encode(self, texts: list):
- batch_size = 16
- ress = []
- for i in range(0, len(texts), batch_size):
- res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
- try:
- ress.extend([d.embedding for d in res.data])
- except Exception as _e:
- log_exception(_e, res)
- # local embedding for LmStudio donot count tokens
- return np.array(ress), 1024
-
- def encode_queries(self, text):
- embds, cnt = self.encode([text])
- return np.array(embds[0]), cnt
-
-
- class AzureEmbed(OpenAIEmbed):
- _FACTORY_NAME = "Azure-OpenAI"
-
- def __init__(self, key, model_name, **kwargs):
- from openai.lib.azure import AzureOpenAI
-
- api_key = json.loads(key).get("api_key", "")
- api_version = json.loads(key).get("api_version", "2024-02-01")
- self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
- self.model_name = model_name
-
-
- class BaiChuanEmbed(OpenAIEmbed):
- _FACTORY_NAME = "BaiChuan"
-
- def __init__(self, key, model_name="Baichuan-Text-Embedding", base_url="https://api.baichuan-ai.com/v1"):
- if not base_url:
- base_url = "https://api.baichuan-ai.com/v1"
- super().__init__(key, model_name, base_url)
-
-
- class QWenEmbed(Base):
- _FACTORY_NAME = "Tongyi-Qianwen"
-
- def __init__(self, key, model_name="text_embedding_v2", **kwargs):
- self.key = key
- self.model_name = model_name
-
- def encode(self, texts: list):
- import time
-
- import dashscope
-
- batch_size = 4
- res = []
- token_count = 0
- texts = [truncate(t, 2048) for t in texts]
- for i in range(0, len(texts), batch_size):
- retry_max = 5
- resp = dashscope.TextEmbedding.call(model=self.model_name, input=texts[i : i + batch_size], api_key=self.key, text_type="document")
- while (resp["output"] is None or resp["output"].get("embeddings") is None) and retry_max > 0:
- time.sleep(10)
- resp = dashscope.TextEmbedding.call(model=self.model_name, input=texts[i : i + batch_size], api_key=self.key, text_type="document")
- retry_max -= 1
- if retry_max == 0 and (resp["output"] is None or resp["output"].get("embeddings") is None):
- if resp.get("message"):
- log_exception(ValueError(f"Retry_max reached, calling embedding model failed: {resp['message']}"))
- else:
- log_exception(ValueError("Retry_max reached, calling embedding model failed"))
- raise
- try:
- embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
- for e in resp["output"]["embeddings"]:
- embds[e["text_index"]] = e["embedding"]
- res.extend(embds)
- token_count += self.total_token_count(resp)
- except Exception as _e:
- log_exception(_e, resp)
- raise
- return np.array(res), token_count
-
- def encode_queries(self, text):
- resp = dashscope.TextEmbedding.call(model=self.model_name, input=text[:2048], api_key=self.key, text_type="query")
- try:
- return np.array(resp["output"]["embeddings"][0]["embedding"]), self.total_token_count(resp)
- except Exception as _e:
- log_exception(_e, resp)
-
-
- class ZhipuEmbed(Base):
- _FACTORY_NAME = "ZHIPU-AI"
-
- def __init__(self, key, model_name="embedding-2", **kwargs):
- self.client = ZhipuAI(api_key=key)
- self.model_name = model_name
-
- def encode(self, texts: list):
- arr = []
- tks_num = 0
- MAX_LEN = -1
- if self.model_name.lower() == "embedding-2":
- MAX_LEN = 512
- if self.model_name.lower() == "embedding-3":
- MAX_LEN = 3072
- if MAX_LEN > 0:
- texts = [truncate(t, MAX_LEN) for t in texts]
-
- for txt in texts:
- res = self.client.embeddings.create(input=txt, model=self.model_name)
- try:
- arr.append(res.data[0].embedding)
- tks_num += self.total_token_count(res)
- except Exception as _e:
- log_exception(_e, res)
- return np.array(arr), tks_num
-
- def encode_queries(self, text):
- res = self.client.embeddings.create(input=text, model=self.model_name)
- try:
- return np.array(res.data[0].embedding), self.total_token_count(res)
- except Exception as _e:
- log_exception(_e, res)
-
-
- class OllamaEmbed(Base):
- _FACTORY_NAME = "Ollama"
-
- _special_tokens = ["<|endoftext|>"]
-
- def __init__(self, key, model_name, **kwargs):
- self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else Client(host=kwargs["base_url"], headers={"Authorization": f"Bearer {key}"})
- self.model_name = model_name
- self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1)))
-
- def encode(self, texts: list):
- arr = []
- tks_num = 0
- for txt in texts:
- # remove special tokens if they exist base on regex in one request
- for token in OllamaEmbed._special_tokens:
- txt = txt.replace(token, "")
- res = self.client.embeddings(prompt=txt, model=self.model_name, options={"use_mmap": True}, keep_alive=self.keep_alive)
- try:
- arr.append(res["embedding"])
- except Exception as _e:
- log_exception(_e, res)
- tks_num += 128
- return np.array(arr), tks_num
-
- def encode_queries(self, text):
- # remove special tokens if they exist
- for token in OllamaEmbed._special_tokens:
- text = text.replace(token, "")
- res = self.client.embeddings(prompt=text, model=self.model_name, options={"use_mmap": True}, keep_alive=self.keep_alive)
- try:
- return np.array(res["embedding"]), 128
- except Exception as _e:
- log_exception(_e, res)
-
-
- class FastEmbed(DefaultEmbedding):
- _FACTORY_NAME = "FastEmbed"
-
- def __init__(
- self,
- key: str | None = None,
- model_name: str = "BAAI/bge-small-en-v1.5",
- cache_dir: str | None = None,
- threads: int | None = None,
- **kwargs,
- ):
- if not settings.LIGHTEN:
- with FastEmbed._model_lock:
- from fastembed import TextEmbedding
-
- if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
- try:
- DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
- DefaultEmbedding._model_name = model_name
- except Exception:
- cache_dir = snapshot_download(
- repo_id="BAAI/bge-small-en-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
- )
- DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
- self._model = DefaultEmbedding._model
- self._model_name = model_name
-
- def encode(self, texts: list):
- # Using the internal tokenizer to encode the texts and get the total
- # number of tokens
- encodings = self._model.model.tokenizer.encode_batch(texts)
- total_tokens = sum(len(e) for e in encodings)
-
- embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]
-
- return np.array(embeddings), total_tokens
-
- def encode_queries(self, text: str):
- # Using the internal tokenizer to encode the texts and get the total
- # number of tokens
- encoding = self._model.model.tokenizer.encode(text)
- embedding = next(self._model.query_embed(text))
- return np.array(embedding), len(encoding.ids)
-
-
- class XinferenceEmbed(Base):
- _FACTORY_NAME = "Xinference"
-
- def __init__(self, key, model_name="", base_url=""):
- base_url = urljoin(base_url, "v1")
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
-
- def encode(self, texts: list):
- batch_size = 16
- ress = []
- total_tokens = 0
- for i in range(0, len(texts), batch_size):
- res = None
- try:
- res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
- ress.extend([d.embedding for d in res.data])
- total_tokens += self.total_token_count(res)
- except Exception as _e:
- log_exception(_e, res)
- return np.array(ress), total_tokens
-
- def encode_queries(self, text):
- res = None
- try:
- res = self.client.embeddings.create(input=[text], model=self.model_name)
- return np.array(res.data[0].embedding), self.total_token_count(res)
- except Exception as _e:
- log_exception(_e, res)
-
-
- class YoudaoEmbed(Base):
- _FACTORY_NAME = "Youdao"
- _client = None
-
- def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
- if not settings.LIGHTEN and not YoudaoEmbed._client:
- from BCEmbedding import EmbeddingModel as qanthing
-
- try:
- logging.info("LOADING BCE...")
- YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(get_home_cache_dir(), "bce-embedding-base_v1"))
- except Exception:
- YoudaoEmbed._client = qanthing(model_name_or_path=model_name.replace("maidalun1020", "InfiniFlow"))
-
- def encode(self, texts: list):
- batch_size = 10
- res = []
- token_count = 0
- for t in texts:
- token_count += num_tokens_from_string(t)
- for i in range(0, len(texts), batch_size):
- embds = YoudaoEmbed._client.encode(texts[i : i + batch_size])
- res.extend(embds)
- return np.array(res), token_count
-
- def encode_queries(self, text):
- embds = YoudaoEmbed._client.encode([text])
- return np.array(embds[0]), num_tokens_from_string(text)
-
-
- class JinaEmbed(Base):
- _FACTORY_NAME = "Jina"
-
- def __init__(self, key, model_name="jina-embeddings-v3", base_url="https://api.jina.ai/v1/embeddings"):
- self.base_url = "https://api.jina.ai/v1/embeddings"
- self.headers = {"Content-Type": "application/json", "Authorization": f"Bearer {key}"}
- self.model_name = model_name
-
- def encode(self, texts: list):
- texts = [truncate(t, 8196) for t in texts]
- batch_size = 16
- ress = []
- token_count = 0
- for i in range(0, len(texts), batch_size):
- data = {"model": self.model_name, "input": texts[i : i + batch_size], "encoding_type": "float"}
- response = requests.post(self.base_url, headers=self.headers, json=data)
- try:
- res = response.json()
- ress.extend([d["embedding"] for d in res["data"]])
- token_count += self.total_token_count(res)
- except Exception as _e:
- log_exception(_e, response)
- return np.array(ress), token_count
-
- def encode_queries(self, text):
- embds, cnt = self.encode([text])
- return np.array(embds[0]), cnt
-
-
- class MistralEmbed(Base):
- _FACTORY_NAME = "Mistral"
-
- def __init__(self, key, model_name="mistral-embed", base_url=None):
- from mistralai.client import MistralClient
-
- self.client = MistralClient(api_key=key)
- self.model_name = model_name
-
- def encode(self, texts: list):
- import time
- import random
- texts = [truncate(t, 8196) for t in texts]
- batch_size = 16
- ress = []
- token_count = 0
- for i in range(0, len(texts), batch_size):
- retry_max = 5
- while retry_max > 0:
- try:
- res = self.client.embeddings(input=texts[i : i + batch_size], model=self.model_name)
- ress.extend([d.embedding for d in res.data])
- token_count += self.total_token_count(res)
- break
- except Exception as _e:
- if retry_max == 1:
- log_exception(_e)
- delay = random.uniform(20, 60)
- time.sleep(delay)
- retry_max -= 1
- return np.array(ress), token_count
-
- def encode_queries(self, text):
- import time
- import random
- retry_max = 5
- while retry_max > 0:
- try:
- res = self.client.embeddings(input=[truncate(text, 8196)], model=self.model_name)
- return np.array(res.data[0].embedding), self.total_token_count(res)
- except Exception as _e:
- if retry_max == 1:
- log_exception(_e)
- delay = random.randint(20, 60)
- time.sleep(delay)
- retry_max -= 1
-
-
- class BedrockEmbed(Base):
- _FACTORY_NAME = "Bedrock"
-
- def __init__(self, key, model_name, **kwargs):
- import boto3
-
- self.bedrock_ak = json.loads(key).get("bedrock_ak", "")
- self.bedrock_sk = json.loads(key).get("bedrock_sk", "")
- self.bedrock_region = json.loads(key).get("bedrock_region", "")
- self.model_name = model_name
- self.is_amazon = self.model_name.split(".")[0] == "amazon"
- self.is_cohere = self.model_name.split(".")[0] == "cohere"
-
- if self.bedrock_ak == "" or self.bedrock_sk == "" or self.bedrock_region == "":
- # Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
- self.client = boto3.client("bedrock-runtime")
- else:
- self.client = boto3.client(service_name="bedrock-runtime", region_name=self.bedrock_region, aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
-
- def encode(self, texts: list):
- texts = [truncate(t, 8196) for t in texts]
- embeddings = []
- token_count = 0
- for text in texts:
- if self.is_amazon:
- body = {"inputText": text}
- elif self.is_cohere:
- body = {"texts": [text], "input_type": "search_document"}
-
- response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
- try:
- model_response = json.loads(response["body"].read())
- embeddings.extend([model_response["embedding"]])
- token_count += num_tokens_from_string(text)
- except Exception as _e:
- log_exception(_e, response)
-
- return np.array(embeddings), token_count
-
- def encode_queries(self, text):
- embeddings = []
- token_count = num_tokens_from_string(text)
- if self.is_amazon:
- body = {"inputText": truncate(text, 8196)}
- elif self.is_cohere:
- body = {"texts": [truncate(text, 8196)], "input_type": "search_query"}
-
- response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
- try:
- model_response = json.loads(response["body"].read())
- embeddings.extend(model_response["embedding"])
- except Exception as _e:
- log_exception(_e, response)
-
- return np.array(embeddings), token_count
-
-
- class GeminiEmbed(Base):
- _FACTORY_NAME = "Gemini"
-
- def __init__(self, key, model_name="models/text-embedding-004", **kwargs):
- self.key = key
- self.model_name = "models/" + model_name
-
- def encode(self, texts: list):
- texts = [truncate(t, 2048) for t in texts]
- token_count = sum(num_tokens_from_string(text) for text in texts)
- genai.configure(api_key=self.key)
- batch_size = 16
- ress = []
- for i in range(0, len(texts), batch_size):
- result = genai.embed_content(model=self.model_name, content=texts[i : i + batch_size], task_type="retrieval_document", title="Embedding of single string")
- try:
- ress.extend(result["embedding"])
- except Exception as _e:
- log_exception(_e, result)
- return np.array(ress), token_count
-
- def encode_queries(self, text):
- genai.configure(api_key=self.key)
- result = genai.embed_content(model=self.model_name, content=truncate(text, 2048), task_type="retrieval_document", title="Embedding of single string")
- token_count = num_tokens_from_string(text)
- try:
- return np.array(result["embedding"]), token_count
- except Exception as _e:
- log_exception(_e, result)
-
-
- class NvidiaEmbed(Base):
- _FACTORY_NAME = "NVIDIA"
-
- def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"):
- if not base_url:
- base_url = "https://integrate.api.nvidia.com/v1/embeddings"
- self.api_key = key
- self.base_url = base_url
- self.headers = {
- "accept": "application/json",
- "Content-Type": "application/json",
- "authorization": f"Bearer {self.api_key}",
- }
- self.model_name = model_name
- if model_name == "nvidia/embed-qa-4":
- self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
- self.model_name = "NV-Embed-QA"
- if model_name == "snowflake/arctic-embed-l":
- self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
-
- def encode(self, texts: list):
- batch_size = 16
- ress = []
- token_count = 0
- for i in range(0, len(texts), batch_size):
- payload = {
- "input": texts[i : i + batch_size],
- "input_type": "query",
- "model": self.model_name,
- "encoding_format": "float",
- "truncate": "END",
- }
- response = requests.post(self.base_url, headers=self.headers, json=payload)
- try:
- res = response.json()
- except Exception as _e:
- log_exception(_e, response)
- ress.extend([d["embedding"] for d in res["data"]])
- token_count += self.total_token_count(res)
- return np.array(ress), token_count
-
- def encode_queries(self, text):
- embds, cnt = self.encode([text])
- return np.array(embds[0]), cnt
-
-
- class LmStudioEmbed(LocalAIEmbed):
- _FACTORY_NAME = "LM-Studio"
-
- def __init__(self, key, model_name, base_url):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- self.client = OpenAI(api_key="lm-studio", base_url=base_url)
- self.model_name = model_name
-
-
- class OpenAI_APIEmbed(OpenAIEmbed):
- _FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
-
- def __init__(self, key, model_name, base_url):
- if not base_url:
- raise ValueError("url cannot be None")
- base_url = urljoin(base_url, "v1")
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name.split("___")[0]
-
-
- class CoHereEmbed(Base):
- _FACTORY_NAME = "Cohere"
-
- def __init__(self, key, model_name, base_url=None):
- from cohere import Client
-
- self.client = Client(api_key=key)
- self.model_name = model_name
-
- def encode(self, texts: list):
- batch_size = 16
- ress = []
- token_count = 0
- for i in range(0, len(texts), batch_size):
- res = self.client.embed(
- texts=texts[i : i + batch_size],
- model=self.model_name,
- input_type="search_document",
- embedding_types=["float"],
- )
- try:
- ress.extend([d for d in res.embeddings.float])
- token_count += res.meta.billed_units.input_tokens
- except Exception as _e:
- log_exception(_e, res)
- return np.array(ress), token_count
-
- def encode_queries(self, text):
- res = self.client.embed(
- texts=[text],
- model=self.model_name,
- input_type="search_query",
- embedding_types=["float"],
- )
- try:
- return np.array(res.embeddings.float[0]), int(res.meta.billed_units.input_tokens)
- except Exception as _e:
- log_exception(_e, res)
-
-
- class TogetherAIEmbed(OpenAIEmbed):
- _FACTORY_NAME = "TogetherAI"
-
- def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
- if not base_url:
- base_url = "https://api.together.xyz/v1"
- super().__init__(key, model_name, base_url=base_url)
-
-
- class PerfXCloudEmbed(OpenAIEmbed):
- _FACTORY_NAME = "PerfXCloud"
-
- def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
- if not base_url:
- base_url = "https://cloud.perfxlab.cn/v1"
- super().__init__(key, model_name, base_url)
-
-
- class UpstageEmbed(OpenAIEmbed):
- _FACTORY_NAME = "Upstage"
-
- def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
- if not base_url:
- base_url = "https://api.upstage.ai/v1/solar"
- super().__init__(key, model_name, base_url)
-
-
- class SILICONFLOWEmbed(Base):
- _FACTORY_NAME = "SILICONFLOW"
-
- def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"):
- if not base_url:
- base_url = "https://api.siliconflow.cn/v1/embeddings"
- self.headers = {
- "accept": "application/json",
- "content-type": "application/json",
- "authorization": f"Bearer {key}",
- }
- self.base_url = base_url
- self.model_name = model_name
-
- def encode(self, texts: list):
- batch_size = 16
- ress = []
- token_count = 0
- for i in range(0, len(texts), batch_size):
- texts_batch = texts[i : i + batch_size]
- payload = {
- "model": self.model_name,
- "input": texts_batch,
- "encoding_format": "float",
- }
- response = requests.post(self.base_url, json=payload, headers=self.headers)
- try:
- res = response.json()
- ress.extend([d["embedding"] for d in res["data"]])
- token_count += self.total_token_count(res)
- except Exception as _e:
- log_exception(_e, response)
-
- return np.array(ress), token_count
-
- def encode_queries(self, text):
- payload = {
- "model": self.model_name,
- "input": text,
- "encoding_format": "float",
- }
- response = requests.post(self.base_url, json=payload, headers=self.headers)
- try:
- res = response.json()
- return np.array(res["data"][0]["embedding"]), self.total_token_count(res)
- except Exception as _e:
- log_exception(_e, response)
-
-
- class ReplicateEmbed(Base):
- _FACTORY_NAME = "Replicate"
-
- def __init__(self, key, model_name, base_url=None):
- from replicate.client import Client
-
- self.model_name = model_name
- self.client = Client(api_token=key)
-
- def encode(self, texts: list):
- batch_size = 16
- token_count = sum([num_tokens_from_string(text) for text in texts])
- ress = []
- for i in range(0, len(texts), batch_size):
- res = self.client.run(self.model_name, input={"texts": texts[i : i + batch_size]})
- ress.extend(res)
- return np.array(ress), token_count
-
- def encode_queries(self, text):
- res = self.client.embed(self.model_name, input={"texts": [text]})
- return np.array(res), num_tokens_from_string(text)
-
-
- class BaiduYiyanEmbed(Base):
- _FACTORY_NAME = "BaiduYiyan"
-
- def __init__(self, key, model_name, base_url=None):
- import qianfan
-
- key = json.loads(key)
- ak = key.get("yiyan_ak", "")
- sk = key.get("yiyan_sk", "")
- self.client = qianfan.Embedding(ak=ak, sk=sk)
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=16):
- res = self.client.do(model=self.model_name, texts=texts).body
- try:
- return (
- np.array([r["embedding"] for r in res["data"]]),
- self.total_token_count(res),
- )
- except Exception as _e:
- log_exception(_e, res)
-
- def encode_queries(self, text):
- res = self.client.do(model=self.model_name, texts=[text]).body
- try:
- return (
- np.array([r["embedding"] for r in res["data"]]),
- self.total_token_count(res),
- )
- except Exception as _e:
- log_exception(_e, res)
-
-
- class VoyageEmbed(Base):
- _FACTORY_NAME = "Voyage AI"
-
- def __init__(self, key, model_name, base_url=None):
- import voyageai
-
- self.client = voyageai.Client(api_key=key)
- self.model_name = model_name
-
- def encode(self, texts: list):
- batch_size = 16
- ress = []
- token_count = 0
- for i in range(0, len(texts), batch_size):
- res = self.client.embed(texts=texts[i : i + batch_size], model=self.model_name, input_type="document")
- try:
- ress.extend(res.embeddings)
- token_count += res.total_tokens
- except Exception as _e:
- log_exception(_e, res)
- return np.array(ress), token_count
-
- def encode_queries(self, text):
- res = self.client.embed(texts=text, model=self.model_name, input_type="query")
- try:
- return np.array(res.embeddings)[0], res.total_tokens
- except Exception as _e:
- log_exception(_e, res)
-
-
- class HuggingFaceEmbed(Base):
- _FACTORY_NAME = "HuggingFace"
-
- def __init__(self, key, model_name, base_url=None, **kwargs):
- if not model_name:
- raise ValueError("Model name cannot be None")
- self.key = key
- self.model_name = model_name.split("___")[0]
- self.base_url = base_url or "http://127.0.0.1:8080"
-
- def encode(self, texts: list):
- embeddings = []
- for text in texts:
- response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
- if response.status_code == 200:
- embedding = response.json()
- embeddings.append(embedding[0])
- else:
- raise Exception(f"Error: {response.status_code} - {response.text}")
- return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
-
- def encode_queries(self, text):
- response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
- if response.status_code == 200:
- embedding = response.json()
- return np.array(embedding[0]), num_tokens_from_string(text)
- else:
- raise Exception(f"Error: {response.status_code} - {response.text}")
-
-
- class VolcEngineEmbed(OpenAIEmbed):
- _FACTORY_NAME = "VolcEngine"
-
- def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
- if not base_url:
- base_url = "https://ark.cn-beijing.volces.com/api/v3"
- ark_api_key = json.loads(key).get("ark_api_key", "")
- model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
- super().__init__(ark_api_key, model_name, base_url)
-
-
- class GPUStackEmbed(OpenAIEmbed):
- _FACTORY_NAME = "GPUStack"
-
- def __init__(self, key, model_name, base_url):
- if not base_url:
- raise ValueError("url cannot be None")
- base_url = urljoin(base_url, "v1")
-
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
-
-
- class NovitaEmbed(SILICONFLOWEmbed):
- _FACTORY_NAME = "NovitaAI"
-
- def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai/embeddings"):
- if not base_url:
- base_url = "https://api.novita.ai/v3/openai/embeddings"
- super().__init__(key, model_name, base_url)
-
-
- class GiteeEmbed(SILICONFLOWEmbed):
- _FACTORY_NAME = "GiteeAI"
-
- def __init__(self, key, model_name, base_url="https://ai.gitee.com/v1/embeddings"):
- if not base_url:
- base_url = "https://ai.gitee.com/v1/embeddings"
- super().__init__(key, model_name, base_url)
-
- class DeepInfraEmbed(OpenAIEmbed):
- _FACTORY_NAME = "DeepInfra"
-
- def __init__(self, key, model_name, base_url="https://api.deepinfra.com/v1/openai"):
- if not base_url:
- base_url = "https://api.deepinfra.com/v1/openai"
- super().__init__(key, model_name, base_url)
-
-
- class Ai302Embed(Base):
- _FACTORY_NAME = "302.AI"
-
- def __init__(self, key, model_name, base_url="https://api.302.ai/v1/embeddings"):
- if not base_url:
- base_url = "https://api.302.ai/v1/embeddings"
- super().__init__(key, model_name, base_url)
|