您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

embedding_model.py 35KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import json
  17. import logging
  18. import os
  19. import re
  20. import threading
  21. from abc import ABC
  22. from urllib.parse import urljoin
  23. import dashscope
  24. import google.generativeai as genai
  25. import numpy as np
  26. import requests
  27. from huggingface_hub import snapshot_download
  28. from ollama import Client
  29. from openai import OpenAI
  30. from zhipuai import ZhipuAI
  31. from api import settings
  32. from api.utils.file_utils import get_home_cache_dir
  33. from api.utils.log_utils import log_exception
  34. from rag.utils import num_tokens_from_string, truncate
  35. class Base(ABC):
  36. def __init__(self, key, model_name, **kwargs):
  37. """
  38. Constructor for abstract base class.
  39. Parameters are accepted for interface consistency but are not stored.
  40. Subclasses should implement their own initialization as needed.
  41. """
  42. pass
  43. def encode(self, texts: list):
  44. raise NotImplementedError("Please implement encode method!")
  45. def encode_queries(self, text: str):
  46. raise NotImplementedError("Please implement encode method!")
  47. def total_token_count(self, resp):
  48. try:
  49. return resp.usage.total_tokens
  50. except Exception:
  51. pass
  52. try:
  53. return resp["usage"]["total_tokens"]
  54. except Exception:
  55. pass
  56. return 0
  57. class DefaultEmbedding(Base):
  58. _FACTORY_NAME = "BAAI"
  59. _model = None
  60. _model_name = ""
  61. _model_lock = threading.Lock()
  62. def __init__(self, key, model_name, **kwargs):
  63. """
  64. If you have trouble downloading HuggingFace models, -_^ this might help!!
  65. For Linux:
  66. export HF_ENDPOINT=https://hf-mirror.com
  67. For Windows:
  68. Good luck
  69. ^_-
  70. """
  71. if not settings.LIGHTEN:
  72. input_cuda_visible_devices = None
  73. with DefaultEmbedding._model_lock:
  74. import torch
  75. from FlagEmbedding import FlagModel
  76. if "CUDA_VISIBLE_DEVICES" in os.environ:
  77. input_cuda_visible_devices = os.environ["CUDA_VISIBLE_DEVICES"]
  78. os.environ["CUDA_VISIBLE_DEVICES"] = "0" # handle some issues with multiple GPUs when initializing the model
  79. if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
  80. try:
  81. DefaultEmbedding._model = FlagModel(
  82. os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
  83. query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
  84. use_fp16=torch.cuda.is_available(),
  85. )
  86. DefaultEmbedding._model_name = model_name
  87. except Exception:
  88. model_dir = snapshot_download(
  89. repo_id="BAAI/bge-large-zh-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
  90. )
  91. DefaultEmbedding._model = FlagModel(model_dir, query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=torch.cuda.is_available())
  92. finally:
  93. if input_cuda_visible_devices:
  94. # restore CUDA_VISIBLE_DEVICES
  95. os.environ["CUDA_VISIBLE_DEVICES"] = input_cuda_visible_devices
  96. self._model = DefaultEmbedding._model
  97. self._model_name = DefaultEmbedding._model_name
  98. def encode(self, texts: list):
  99. batch_size = 16
  100. texts = [truncate(t, 2048) for t in texts]
  101. token_count = 0
  102. for t in texts:
  103. token_count += num_tokens_from_string(t)
  104. ress = None
  105. for i in range(0, len(texts), batch_size):
  106. if ress is None:
  107. ress = self._model.encode(texts[i : i + batch_size], convert_to_numpy=True)
  108. else:
  109. ress = np.concatenate((ress, self._model.encode(texts[i : i + batch_size], convert_to_numpy=True)), axis=0)
  110. return ress, token_count
  111. def encode_queries(self, text: str):
  112. token_count = num_tokens_from_string(text)
  113. return self._model.encode_queries([text], convert_to_numpy=False)[0][0].cpu().numpy(), token_count
  114. class OpenAIEmbed(Base):
  115. _FACTORY_NAME = "OpenAI"
  116. def __init__(self, key, model_name="text-embedding-ada-002", base_url="https://api.openai.com/v1"):
  117. if not base_url:
  118. base_url = "https://api.openai.com/v1"
  119. self.client = OpenAI(api_key=key, base_url=base_url)
  120. self.model_name = model_name
  121. def encode(self, texts: list):
  122. # OpenAI requires batch size <=16
  123. batch_size = 16
  124. texts = [truncate(t, 8191) for t in texts]
  125. ress = []
  126. total_tokens = 0
  127. for i in range(0, len(texts), batch_size):
  128. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  129. try:
  130. ress.extend([d.embedding for d in res.data])
  131. total_tokens += self.total_token_count(res)
  132. except Exception as _e:
  133. log_exception(_e, res)
  134. return np.array(ress), total_tokens
  135. def encode_queries(self, text):
  136. res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name)
  137. return np.array(res.data[0].embedding), self.total_token_count(res)
  138. class LocalAIEmbed(Base):
  139. _FACTORY_NAME = "LocalAI"
  140. def __init__(self, key, model_name, base_url):
  141. if not base_url:
  142. raise ValueError("Local embedding model url cannot be None")
  143. base_url = urljoin(base_url, "v1")
  144. self.client = OpenAI(api_key="empty", base_url=base_url)
  145. self.model_name = model_name.split("___")[0]
  146. def encode(self, texts: list):
  147. batch_size = 16
  148. ress = []
  149. for i in range(0, len(texts), batch_size):
  150. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  151. try:
  152. ress.extend([d.embedding for d in res.data])
  153. except Exception as _e:
  154. log_exception(_e, res)
  155. # local embedding for LmStudio donot count tokens
  156. return np.array(ress), 1024
  157. def encode_queries(self, text):
  158. embds, cnt = self.encode([text])
  159. return np.array(embds[0]), cnt
  160. class AzureEmbed(OpenAIEmbed):
  161. _FACTORY_NAME = "Azure-OpenAI"
  162. def __init__(self, key, model_name, **kwargs):
  163. from openai.lib.azure import AzureOpenAI
  164. api_key = json.loads(key).get("api_key", "")
  165. api_version = json.loads(key).get("api_version", "2024-02-01")
  166. self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
  167. self.model_name = model_name
  168. class BaiChuanEmbed(OpenAIEmbed):
  169. _FACTORY_NAME = "BaiChuan"
  170. def __init__(self, key, model_name="Baichuan-Text-Embedding", base_url="https://api.baichuan-ai.com/v1"):
  171. if not base_url:
  172. base_url = "https://api.baichuan-ai.com/v1"
  173. super().__init__(key, model_name, base_url)
  174. class QWenEmbed(Base):
  175. _FACTORY_NAME = "Tongyi-Qianwen"
  176. def __init__(self, key, model_name="text_embedding_v2", **kwargs):
  177. self.key = key
  178. self.model_name = model_name
  179. def encode(self, texts: list):
  180. import time
  181. import dashscope
  182. batch_size = 4
  183. res = []
  184. token_count = 0
  185. texts = [truncate(t, 2048) for t in texts]
  186. for i in range(0, len(texts), batch_size):
  187. retry_max = 5
  188. resp = dashscope.TextEmbedding.call(model=self.model_name, input=texts[i : i + batch_size], api_key=self.key, text_type="document")
  189. while (resp["output"] is None or resp["output"].get("embeddings") is None) and retry_max > 0:
  190. time.sleep(10)
  191. resp = dashscope.TextEmbedding.call(model=self.model_name, input=texts[i : i + batch_size], api_key=self.key, text_type="document")
  192. retry_max -= 1
  193. if retry_max == 0 and (resp["output"] is None or resp["output"].get("embeddings") is None):
  194. if resp.get("message"):
  195. log_exception(ValueError(f"Retry_max reached, calling embedding model failed: {resp['message']}"))
  196. else:
  197. log_exception(ValueError("Retry_max reached, calling embedding model failed"))
  198. raise
  199. try:
  200. embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
  201. for e in resp["output"]["embeddings"]:
  202. embds[e["text_index"]] = e["embedding"]
  203. res.extend(embds)
  204. token_count += self.total_token_count(resp)
  205. except Exception as _e:
  206. log_exception(_e, resp)
  207. raise
  208. return np.array(res), token_count
  209. def encode_queries(self, text):
  210. resp = dashscope.TextEmbedding.call(model=self.model_name, input=text[:2048], api_key=self.key, text_type="query")
  211. try:
  212. return np.array(resp["output"]["embeddings"][0]["embedding"]), self.total_token_count(resp)
  213. except Exception as _e:
  214. log_exception(_e, resp)
  215. class ZhipuEmbed(Base):
  216. _FACTORY_NAME = "ZHIPU-AI"
  217. def __init__(self, key, model_name="embedding-2", **kwargs):
  218. self.client = ZhipuAI(api_key=key)
  219. self.model_name = model_name
  220. def encode(self, texts: list):
  221. arr = []
  222. tks_num = 0
  223. MAX_LEN = -1
  224. if self.model_name.lower() == "embedding-2":
  225. MAX_LEN = 512
  226. if self.model_name.lower() == "embedding-3":
  227. MAX_LEN = 3072
  228. if MAX_LEN > 0:
  229. texts = [truncate(t, MAX_LEN) for t in texts]
  230. for txt in texts:
  231. res = self.client.embeddings.create(input=txt, model=self.model_name)
  232. try:
  233. arr.append(res.data[0].embedding)
  234. tks_num += self.total_token_count(res)
  235. except Exception as _e:
  236. log_exception(_e, res)
  237. return np.array(arr), tks_num
  238. def encode_queries(self, text):
  239. res = self.client.embeddings.create(input=text, model=self.model_name)
  240. try:
  241. return np.array(res.data[0].embedding), self.total_token_count(res)
  242. except Exception as _e:
  243. log_exception(_e, res)
  244. class OllamaEmbed(Base):
  245. _FACTORY_NAME = "Ollama"
  246. _special_tokens = ["<|endoftext|>"]
  247. def __init__(self, key, model_name, **kwargs):
  248. self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else Client(host=kwargs["base_url"], headers={"Authorization": f"Bearer {key}"})
  249. self.model_name = model_name
  250. self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1)))
  251. def encode(self, texts: list):
  252. arr = []
  253. tks_num = 0
  254. for txt in texts:
  255. # remove special tokens if they exist base on regex in one request
  256. for token in OllamaEmbed._special_tokens:
  257. txt = txt.replace(token, "")
  258. res = self.client.embeddings(prompt=txt, model=self.model_name, options={"use_mmap": True}, keep_alive=self.keep_alive)
  259. try:
  260. arr.append(res["embedding"])
  261. except Exception as _e:
  262. log_exception(_e, res)
  263. tks_num += 128
  264. return np.array(arr), tks_num
  265. def encode_queries(self, text):
  266. # remove special tokens if they exist
  267. for token in OllamaEmbed._special_tokens:
  268. text = text.replace(token, "")
  269. res = self.client.embeddings(prompt=text, model=self.model_name, options={"use_mmap": True}, keep_alive=self.keep_alive)
  270. try:
  271. return np.array(res["embedding"]), 128
  272. except Exception as _e:
  273. log_exception(_e, res)
  274. class FastEmbed(DefaultEmbedding):
  275. _FACTORY_NAME = "FastEmbed"
  276. def __init__(
  277. self,
  278. key: str | None = None,
  279. model_name: str = "BAAI/bge-small-en-v1.5",
  280. cache_dir: str | None = None,
  281. threads: int | None = None,
  282. **kwargs,
  283. ):
  284. if not settings.LIGHTEN:
  285. with FastEmbed._model_lock:
  286. from fastembed import TextEmbedding
  287. if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
  288. try:
  289. DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
  290. DefaultEmbedding._model_name = model_name
  291. except Exception:
  292. cache_dir = snapshot_download(
  293. repo_id="BAAI/bge-small-en-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
  294. )
  295. DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
  296. self._model = DefaultEmbedding._model
  297. self._model_name = model_name
  298. def encode(self, texts: list):
  299. # Using the internal tokenizer to encode the texts and get the total
  300. # number of tokens
  301. encodings = self._model.model.tokenizer.encode_batch(texts)
  302. total_tokens = sum(len(e) for e in encodings)
  303. embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]
  304. return np.array(embeddings), total_tokens
  305. def encode_queries(self, text: str):
  306. # Using the internal tokenizer to encode the texts and get the total
  307. # number of tokens
  308. encoding = self._model.model.tokenizer.encode(text)
  309. embedding = next(self._model.query_embed(text))
  310. return np.array(embedding), len(encoding.ids)
  311. class XinferenceEmbed(Base):
  312. _FACTORY_NAME = "Xinference"
  313. def __init__(self, key, model_name="", base_url=""):
  314. base_url = urljoin(base_url, "v1")
  315. self.client = OpenAI(api_key=key, base_url=base_url)
  316. self.model_name = model_name
  317. def encode(self, texts: list):
  318. batch_size = 16
  319. ress = []
  320. total_tokens = 0
  321. for i in range(0, len(texts), batch_size):
  322. res = None
  323. try:
  324. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  325. ress.extend([d.embedding for d in res.data])
  326. total_tokens += self.total_token_count(res)
  327. except Exception as _e:
  328. log_exception(_e, res)
  329. return np.array(ress), total_tokens
  330. def encode_queries(self, text):
  331. res = None
  332. try:
  333. res = self.client.embeddings.create(input=[text], model=self.model_name)
  334. return np.array(res.data[0].embedding), self.total_token_count(res)
  335. except Exception as _e:
  336. log_exception(_e, res)
  337. class YoudaoEmbed(Base):
  338. _FACTORY_NAME = "Youdao"
  339. _client = None
  340. def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
  341. if not settings.LIGHTEN and not YoudaoEmbed._client:
  342. from BCEmbedding import EmbeddingModel as qanthing
  343. try:
  344. logging.info("LOADING BCE...")
  345. YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(get_home_cache_dir(), "bce-embedding-base_v1"))
  346. except Exception:
  347. YoudaoEmbed._client = qanthing(model_name_or_path=model_name.replace("maidalun1020", "InfiniFlow"))
  348. def encode(self, texts: list):
  349. batch_size = 10
  350. res = []
  351. token_count = 0
  352. for t in texts:
  353. token_count += num_tokens_from_string(t)
  354. for i in range(0, len(texts), batch_size):
  355. embds = YoudaoEmbed._client.encode(texts[i : i + batch_size])
  356. res.extend(embds)
  357. return np.array(res), token_count
  358. def encode_queries(self, text):
  359. embds = YoudaoEmbed._client.encode([text])
  360. return np.array(embds[0]), num_tokens_from_string(text)
  361. class JinaEmbed(Base):
  362. _FACTORY_NAME = "Jina"
  363. def __init__(self, key, model_name="jina-embeddings-v3", base_url="https://api.jina.ai/v1/embeddings"):
  364. self.base_url = "https://api.jina.ai/v1/embeddings"
  365. self.headers = {"Content-Type": "application/json", "Authorization": f"Bearer {key}"}
  366. self.model_name = model_name
  367. def encode(self, texts: list):
  368. texts = [truncate(t, 8196) for t in texts]
  369. batch_size = 16
  370. ress = []
  371. token_count = 0
  372. for i in range(0, len(texts), batch_size):
  373. data = {"model": self.model_name, "input": texts[i : i + batch_size], "encoding_type": "float"}
  374. response = requests.post(self.base_url, headers=self.headers, json=data)
  375. try:
  376. res = response.json()
  377. ress.extend([d["embedding"] for d in res["data"]])
  378. token_count += self.total_token_count(res)
  379. except Exception as _e:
  380. log_exception(_e, response)
  381. return np.array(ress), token_count
  382. def encode_queries(self, text):
  383. embds, cnt = self.encode([text])
  384. return np.array(embds[0]), cnt
  385. class MistralEmbed(Base):
  386. _FACTORY_NAME = "Mistral"
  387. def __init__(self, key, model_name="mistral-embed", base_url=None):
  388. from mistralai.client import MistralClient
  389. self.client = MistralClient(api_key=key)
  390. self.model_name = model_name
  391. def encode(self, texts: list):
  392. import time
  393. import random
  394. texts = [truncate(t, 8196) for t in texts]
  395. batch_size = 16
  396. ress = []
  397. token_count = 0
  398. for i in range(0, len(texts), batch_size):
  399. retry_max = 5
  400. while retry_max > 0:
  401. try:
  402. res = self.client.embeddings(input=texts[i : i + batch_size], model=self.model_name)
  403. ress.extend([d.embedding for d in res.data])
  404. token_count += self.total_token_count(res)
  405. break
  406. except Exception as _e:
  407. if retry_max == 1:
  408. log_exception(_e)
  409. delay = random.uniform(20, 60)
  410. time.sleep(delay)
  411. retry_max -= 1
  412. return np.array(ress), token_count
  413. def encode_queries(self, text):
  414. import time
  415. import random
  416. retry_max = 5
  417. while retry_max > 0:
  418. try:
  419. res = self.client.embeddings(input=[truncate(text, 8196)], model=self.model_name)
  420. return np.array(res.data[0].embedding), self.total_token_count(res)
  421. except Exception as _e:
  422. if retry_max == 1:
  423. log_exception(_e)
  424. delay = random.randint(20, 60)
  425. time.sleep(delay)
  426. retry_max -= 1
  427. class BedrockEmbed(Base):
  428. _FACTORY_NAME = "Bedrock"
  429. def __init__(self, key, model_name, **kwargs):
  430. import boto3
  431. self.bedrock_ak = json.loads(key).get("bedrock_ak", "")
  432. self.bedrock_sk = json.loads(key).get("bedrock_sk", "")
  433. self.bedrock_region = json.loads(key).get("bedrock_region", "")
  434. self.model_name = model_name
  435. self.is_amazon = self.model_name.split(".")[0] == "amazon"
  436. self.is_cohere = self.model_name.split(".")[0] == "cohere"
  437. if self.bedrock_ak == "" or self.bedrock_sk == "" or self.bedrock_region == "":
  438. # Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
  439. self.client = boto3.client("bedrock-runtime")
  440. else:
  441. self.client = boto3.client(service_name="bedrock-runtime", region_name=self.bedrock_region, aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
  442. def encode(self, texts: list):
  443. texts = [truncate(t, 8196) for t in texts]
  444. embeddings = []
  445. token_count = 0
  446. for text in texts:
  447. if self.is_amazon:
  448. body = {"inputText": text}
  449. elif self.is_cohere:
  450. body = {"texts": [text], "input_type": "search_document"}
  451. response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
  452. try:
  453. model_response = json.loads(response["body"].read())
  454. embeddings.extend([model_response["embedding"]])
  455. token_count += num_tokens_from_string(text)
  456. except Exception as _e:
  457. log_exception(_e, response)
  458. return np.array(embeddings), token_count
  459. def encode_queries(self, text):
  460. embeddings = []
  461. token_count = num_tokens_from_string(text)
  462. if self.is_amazon:
  463. body = {"inputText": truncate(text, 8196)}
  464. elif self.is_cohere:
  465. body = {"texts": [truncate(text, 8196)], "input_type": "search_query"}
  466. response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
  467. try:
  468. model_response = json.loads(response["body"].read())
  469. embeddings.extend(model_response["embedding"])
  470. except Exception as _e:
  471. log_exception(_e, response)
  472. return np.array(embeddings), token_count
  473. class GeminiEmbed(Base):
  474. _FACTORY_NAME = "Gemini"
  475. def __init__(self, key, model_name="models/text-embedding-004", **kwargs):
  476. self.key = key
  477. self.model_name = "models/" + model_name
  478. def encode(self, texts: list):
  479. texts = [truncate(t, 2048) for t in texts]
  480. token_count = sum(num_tokens_from_string(text) for text in texts)
  481. genai.configure(api_key=self.key)
  482. batch_size = 16
  483. ress = []
  484. for i in range(0, len(texts), batch_size):
  485. result = genai.embed_content(model=self.model_name, content=texts[i : i + batch_size], task_type="retrieval_document", title="Embedding of single string")
  486. try:
  487. ress.extend(result["embedding"])
  488. except Exception as _e:
  489. log_exception(_e, result)
  490. return np.array(ress), token_count
  491. def encode_queries(self, text):
  492. genai.configure(api_key=self.key)
  493. result = genai.embed_content(model=self.model_name, content=truncate(text, 2048), task_type="retrieval_document", title="Embedding of single string")
  494. token_count = num_tokens_from_string(text)
  495. try:
  496. return np.array(result["embedding"]), token_count
  497. except Exception as _e:
  498. log_exception(_e, result)
  499. class NvidiaEmbed(Base):
  500. _FACTORY_NAME = "NVIDIA"
  501. def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"):
  502. if not base_url:
  503. base_url = "https://integrate.api.nvidia.com/v1/embeddings"
  504. self.api_key = key
  505. self.base_url = base_url
  506. self.headers = {
  507. "accept": "application/json",
  508. "Content-Type": "application/json",
  509. "authorization": f"Bearer {self.api_key}",
  510. }
  511. self.model_name = model_name
  512. if model_name == "nvidia/embed-qa-4":
  513. self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
  514. self.model_name = "NV-Embed-QA"
  515. if model_name == "snowflake/arctic-embed-l":
  516. self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
  517. def encode(self, texts: list):
  518. batch_size = 16
  519. ress = []
  520. token_count = 0
  521. for i in range(0, len(texts), batch_size):
  522. payload = {
  523. "input": texts[i : i + batch_size],
  524. "input_type": "query",
  525. "model": self.model_name,
  526. "encoding_format": "float",
  527. "truncate": "END",
  528. }
  529. response = requests.post(self.base_url, headers=self.headers, json=payload)
  530. try:
  531. res = response.json()
  532. except Exception as _e:
  533. log_exception(_e, response)
  534. ress.extend([d["embedding"] for d in res["data"]])
  535. token_count += self.total_token_count(res)
  536. return np.array(ress), token_count
  537. def encode_queries(self, text):
  538. embds, cnt = self.encode([text])
  539. return np.array(embds[0]), cnt
  540. class LmStudioEmbed(LocalAIEmbed):
  541. _FACTORY_NAME = "LM-Studio"
  542. def __init__(self, key, model_name, base_url):
  543. if not base_url:
  544. raise ValueError("Local llm url cannot be None")
  545. base_url = urljoin(base_url, "v1")
  546. self.client = OpenAI(api_key="lm-studio", base_url=base_url)
  547. self.model_name = model_name
  548. class OpenAI_APIEmbed(OpenAIEmbed):
  549. _FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
  550. def __init__(self, key, model_name, base_url):
  551. if not base_url:
  552. raise ValueError("url cannot be None")
  553. base_url = urljoin(base_url, "v1")
  554. self.client = OpenAI(api_key=key, base_url=base_url)
  555. self.model_name = model_name.split("___")[0]
  556. class CoHereEmbed(Base):
  557. _FACTORY_NAME = "Cohere"
  558. def __init__(self, key, model_name, base_url=None):
  559. from cohere import Client
  560. self.client = Client(api_key=key)
  561. self.model_name = model_name
  562. def encode(self, texts: list):
  563. batch_size = 16
  564. ress = []
  565. token_count = 0
  566. for i in range(0, len(texts), batch_size):
  567. res = self.client.embed(
  568. texts=texts[i : i + batch_size],
  569. model=self.model_name,
  570. input_type="search_document",
  571. embedding_types=["float"],
  572. )
  573. try:
  574. ress.extend([d for d in res.embeddings.float])
  575. token_count += res.meta.billed_units.input_tokens
  576. except Exception as _e:
  577. log_exception(_e, res)
  578. return np.array(ress), token_count
  579. def encode_queries(self, text):
  580. res = self.client.embed(
  581. texts=[text],
  582. model=self.model_name,
  583. input_type="search_query",
  584. embedding_types=["float"],
  585. )
  586. try:
  587. return np.array(res.embeddings.float[0]), int(res.meta.billed_units.input_tokens)
  588. except Exception as _e:
  589. log_exception(_e, res)
  590. class TogetherAIEmbed(OpenAIEmbed):
  591. _FACTORY_NAME = "TogetherAI"
  592. def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
  593. if not base_url:
  594. base_url = "https://api.together.xyz/v1"
  595. super().__init__(key, model_name, base_url=base_url)
  596. class PerfXCloudEmbed(OpenAIEmbed):
  597. _FACTORY_NAME = "PerfXCloud"
  598. def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
  599. if not base_url:
  600. base_url = "https://cloud.perfxlab.cn/v1"
  601. super().__init__(key, model_name, base_url)
  602. class UpstageEmbed(OpenAIEmbed):
  603. _FACTORY_NAME = "Upstage"
  604. def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
  605. if not base_url:
  606. base_url = "https://api.upstage.ai/v1/solar"
  607. super().__init__(key, model_name, base_url)
  608. class SILICONFLOWEmbed(Base):
  609. _FACTORY_NAME = "SILICONFLOW"
  610. def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"):
  611. if not base_url:
  612. base_url = "https://api.siliconflow.cn/v1/embeddings"
  613. self.headers = {
  614. "accept": "application/json",
  615. "content-type": "application/json",
  616. "authorization": f"Bearer {key}",
  617. }
  618. self.base_url = base_url
  619. self.model_name = model_name
  620. def encode(self, texts: list):
  621. batch_size = 16
  622. ress = []
  623. token_count = 0
  624. for i in range(0, len(texts), batch_size):
  625. texts_batch = texts[i : i + batch_size]
  626. payload = {
  627. "model": self.model_name,
  628. "input": texts_batch,
  629. "encoding_format": "float",
  630. }
  631. response = requests.post(self.base_url, json=payload, headers=self.headers)
  632. try:
  633. res = response.json()
  634. ress.extend([d["embedding"] for d in res["data"]])
  635. token_count += self.total_token_count(res)
  636. except Exception as _e:
  637. log_exception(_e, response)
  638. return np.array(ress), token_count
  639. def encode_queries(self, text):
  640. payload = {
  641. "model": self.model_name,
  642. "input": text,
  643. "encoding_format": "float",
  644. }
  645. response = requests.post(self.base_url, json=payload, headers=self.headers)
  646. try:
  647. res = response.json()
  648. return np.array(res["data"][0]["embedding"]), self.total_token_count(res)
  649. except Exception as _e:
  650. log_exception(_e, response)
  651. class ReplicateEmbed(Base):
  652. _FACTORY_NAME = "Replicate"
  653. def __init__(self, key, model_name, base_url=None):
  654. from replicate.client import Client
  655. self.model_name = model_name
  656. self.client = Client(api_token=key)
  657. def encode(self, texts: list):
  658. batch_size = 16
  659. token_count = sum([num_tokens_from_string(text) for text in texts])
  660. ress = []
  661. for i in range(0, len(texts), batch_size):
  662. res = self.client.run(self.model_name, input={"texts": texts[i : i + batch_size]})
  663. ress.extend(res)
  664. return np.array(ress), token_count
  665. def encode_queries(self, text):
  666. res = self.client.embed(self.model_name, input={"texts": [text]})
  667. return np.array(res), num_tokens_from_string(text)
  668. class BaiduYiyanEmbed(Base):
  669. _FACTORY_NAME = "BaiduYiyan"
  670. def __init__(self, key, model_name, base_url=None):
  671. import qianfan
  672. key = json.loads(key)
  673. ak = key.get("yiyan_ak", "")
  674. sk = key.get("yiyan_sk", "")
  675. self.client = qianfan.Embedding(ak=ak, sk=sk)
  676. self.model_name = model_name
  677. def encode(self, texts: list, batch_size=16):
  678. res = self.client.do(model=self.model_name, texts=texts).body
  679. try:
  680. return (
  681. np.array([r["embedding"] for r in res["data"]]),
  682. self.total_token_count(res),
  683. )
  684. except Exception as _e:
  685. log_exception(_e, res)
  686. def encode_queries(self, text):
  687. res = self.client.do(model=self.model_name, texts=[text]).body
  688. try:
  689. return (
  690. np.array([r["embedding"] for r in res["data"]]),
  691. self.total_token_count(res),
  692. )
  693. except Exception as _e:
  694. log_exception(_e, res)
  695. class VoyageEmbed(Base):
  696. _FACTORY_NAME = "Voyage AI"
  697. def __init__(self, key, model_name, base_url=None):
  698. import voyageai
  699. self.client = voyageai.Client(api_key=key)
  700. self.model_name = model_name
  701. def encode(self, texts: list):
  702. batch_size = 16
  703. ress = []
  704. token_count = 0
  705. for i in range(0, len(texts), batch_size):
  706. res = self.client.embed(texts=texts[i : i + batch_size], model=self.model_name, input_type="document")
  707. try:
  708. ress.extend(res.embeddings)
  709. token_count += res.total_tokens
  710. except Exception as _e:
  711. log_exception(_e, res)
  712. return np.array(ress), token_count
  713. def encode_queries(self, text):
  714. res = self.client.embed(texts=text, model=self.model_name, input_type="query")
  715. try:
  716. return np.array(res.embeddings)[0], res.total_tokens
  717. except Exception as _e:
  718. log_exception(_e, res)
  719. class HuggingFaceEmbed(Base):
  720. _FACTORY_NAME = "HuggingFace"
  721. def __init__(self, key, model_name, base_url=None, **kwargs):
  722. if not model_name:
  723. raise ValueError("Model name cannot be None")
  724. self.key = key
  725. self.model_name = model_name.split("___")[0]
  726. self.base_url = base_url or "http://127.0.0.1:8080"
  727. def encode(self, texts: list):
  728. embeddings = []
  729. for text in texts:
  730. response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
  731. if response.status_code == 200:
  732. embedding = response.json()
  733. embeddings.append(embedding[0])
  734. else:
  735. raise Exception(f"Error: {response.status_code} - {response.text}")
  736. return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
  737. def encode_queries(self, text):
  738. response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
  739. if response.status_code == 200:
  740. embedding = response.json()
  741. return np.array(embedding[0]), num_tokens_from_string(text)
  742. else:
  743. raise Exception(f"Error: {response.status_code} - {response.text}")
  744. class VolcEngineEmbed(OpenAIEmbed):
  745. _FACTORY_NAME = "VolcEngine"
  746. def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
  747. if not base_url:
  748. base_url = "https://ark.cn-beijing.volces.com/api/v3"
  749. ark_api_key = json.loads(key).get("ark_api_key", "")
  750. model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
  751. super().__init__(ark_api_key, model_name, base_url)
  752. class GPUStackEmbed(OpenAIEmbed):
  753. _FACTORY_NAME = "GPUStack"
  754. def __init__(self, key, model_name, base_url):
  755. if not base_url:
  756. raise ValueError("url cannot be None")
  757. base_url = urljoin(base_url, "v1")
  758. self.client = OpenAI(api_key=key, base_url=base_url)
  759. self.model_name = model_name
  760. class NovitaEmbed(SILICONFLOWEmbed):
  761. _FACTORY_NAME = "NovitaAI"
  762. def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai/embeddings"):
  763. if not base_url:
  764. base_url = "https://api.novita.ai/v3/openai/embeddings"
  765. super().__init__(key, model_name, base_url)
  766. class GiteeEmbed(SILICONFLOWEmbed):
  767. _FACTORY_NAME = "GiteeAI"
  768. def __init__(self, key, model_name, base_url="https://ai.gitee.com/v1/embeddings"):
  769. if not base_url:
  770. base_url = "https://ai.gitee.com/v1/embeddings"
  771. super().__init__(key, model_name, base_url)
  772. class DeepInfraEmbed(OpenAIEmbed):
  773. _FACTORY_NAME = "DeepInfra"
  774. def __init__(self, key, model_name, base_url="https://api.deepinfra.com/v1/openai"):
  775. if not base_url:
  776. base_url = "https://api.deepinfra.com/v1/openai"
  777. super().__init__(key, model_name, base_url)
  778. class Ai302Embed(Base):
  779. _FACTORY_NAME = "302.AI"
  780. def __init__(self, key, model_name, base_url="https://api.302.ai/v1/embeddings"):
  781. if not base_url:
  782. base_url = "https://api.302.ai/v1/embeddings"
  783. super().__init__(key, model_name, base_url)