| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745 |
- #
- # Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import asyncio
- import json
- import logging
- import os
- import random
- import re
- import time
- from abc import ABC
- from copy import deepcopy
- from typing import Any, Protocol
- from urllib.parse import urljoin
-
- import json_repair
- import openai
- import requests
- from dashscope import Generation
- from ollama import Client
- from openai import OpenAI
- from openai.lib.azure import AzureOpenAI
- from strenum import StrEnum
- from zhipuai import ZhipuAI
-
- from rag.nlp import is_chinese, is_english
- from rag.utils import num_tokens_from_string
-
- # Error message constants
- class LLMErrorCode(StrEnum):
- ERROR_RATE_LIMIT = "RATE_LIMIT_EXCEEDED"
- ERROR_AUTHENTICATION = "AUTH_ERROR"
- ERROR_INVALID_REQUEST = "INVALID_REQUEST"
- ERROR_SERVER = "SERVER_ERROR"
- ERROR_TIMEOUT = "TIMEOUT"
- ERROR_CONNECTION = "CONNECTION_ERROR"
- ERROR_MODEL = "MODEL_ERROR"
- ERROR_MAX_ROUNDS = "ERROR_MAX_ROUNDS"
- ERROR_CONTENT_FILTER = "CONTENT_FILTERED"
- ERROR_QUOTA = "QUOTA_EXCEEDED"
- ERROR_MAX_RETRIES = "MAX_RETRIES_EXCEEDED"
- ERROR_GENERIC = "GENERIC_ERROR"
-
-
- class ReActMode(StrEnum):
- FUNCTION_CALL = "function_call"
- REACT = "react"
-
- ERROR_PREFIX = "**ERROR**"
- LENGTH_NOTIFICATION_CN = "······\n由于大模型的上下文窗口大小限制,回答已经被大模型截断。"
- LENGTH_NOTIFICATION_EN = "...\nThe answer is truncated by your chosen LLM due to its limitation on context length."
-
-
- class ToolCallSession(Protocol):
- def tool_call(self, name: str, arguments: dict[str, Any]) -> str: ...
-
-
- class Base(ABC):
- def __init__(self, key, model_name, base_url, **kwargs):
- timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600))
- self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout)
- self.model_name = model_name
- # Configure retry parameters
- self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
- self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))
- self.max_rounds = kwargs.get("max_rounds", 5)
- self.is_tools = False
- self.tools = []
- self.toolcall_sessions = {}
-
- def _get_delay(self):
- """Calculate retry delay time"""
- return self.base_delay * random.uniform(10, 150)
-
- def _classify_error(self, error):
- """Classify error based on error message content"""
- error_str = str(error).lower()
-
- keywords_mapping = [
- (["quota", "capacity", "credit", "billing", "balance", "欠费"], LLMErrorCode.ERROR_QUOTA),
- (["rate limit", "429", "tpm limit", "too many requests", "requests per minute"], LLMErrorCode.ERROR_RATE_LIMIT),
- (["auth", "key", "apikey", "401", "forbidden", "permission"], LLMErrorCode.ERROR_AUTHENTICATION),
- (["invalid", "bad request", "400", "format", "malformed", "parameter"], LLMErrorCode.ERROR_INVALID_REQUEST),
- (["server", "503", "502", "504", "500", "unavailable"], LLMErrorCode.ERROR_SERVER),
- (["timeout", "timed out"], LLMErrorCode.ERROR_TIMEOUT),
- (["connect", "network", "unreachable", "dns"], LLMErrorCode.ERROR_CONNECTION),
- (["filter", "content", "policy", "blocked", "safety", "inappropriate"], LLMErrorCode.ERROR_CONTENT_FILTER),
- (["model", "not found", "does not exist", "not available"], LLMErrorCode.ERROR_MODEL),
- (["max rounds"], LLMErrorCode.ERROR_MODEL),
- ]
- for words, code in keywords_mapping:
- if re.search("({})".format("|".join(words)), error_str):
- return code
-
- return LLMErrorCode.ERROR_GENERIC
-
- def _clean_conf(self, gen_conf):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- return gen_conf
-
- def _chat(self, history, gen_conf, **kwargs):
- logging.info("[HISTORY]" + json.dumps(history, ensure_ascii=False, indent=2))
- if self.model_name.lower().find("qwen3") >=0:
- kwargs["extra_body"] = {"enable_thinking": False}
- response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf, **kwargs)
-
- if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]):
- return "", 0
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- ans = self._length_stop(ans)
- return ans, self.total_token_count(response)
-
- def _chat_streamly(self, history, gen_conf, **kwargs):
- logging.info("[HISTORY STREAMLY]" + json.dumps(history, ensure_ascii=False, indent=4))
- reasoning_start = False
- response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf, stop=kwargs.get("stop"))
- for resp in response:
- if not resp.choices:
- continue
- if not resp.choices[0].delta.content:
- resp.choices[0].delta.content = ""
- if kwargs.get("with_reasoning", True) and hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content:
- ans = ""
- if not reasoning_start:
- reasoning_start = True
- ans = "<think>"
- ans += resp.choices[0].delta.reasoning_content + "</think>"
- else:
- reasoning_start = False
- ans = resp.choices[0].delta.content
-
- tol = self.total_token_count(resp)
- if not tol:
- tol = num_tokens_from_string(resp.choices[0].delta.content)
-
- if resp.choices[0].finish_reason == "length":
- if is_chinese(ans):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- yield ans, tol
-
- def _length_stop(self, ans):
- if is_chinese([ans]):
- return ans + LENGTH_NOTIFICATION_CN
- return ans + LENGTH_NOTIFICATION_EN
-
- def _exceptions(self, e, attempt):
- logging.exception("OpenAI chat_with_tools")
- # Classify the error
- error_code = self._classify_error(e)
- if attempt == self.max_retries:
- error_code = LLMErrorCode.ERROR_MAX_RETRIES
-
- # Check if it's a rate limit error or server error and not the last attempt
- should_retry = (error_code == LLMErrorCode.ERROR_RATE_LIMIT or error_code == LLMErrorCode.ERROR_SERVER)
- if not should_retry:
- return f"{ERROR_PREFIX}: {error_code} - {str(e)}"
-
- delay = self._get_delay()
- logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})")
- time.sleep(delay)
-
- def _verbose_tool_use(self, name, args, res):
- return "<tool_call>" + json.dumps({
- "name": name,
- "args": args,
- "result": res
- }, ensure_ascii=False, indent=2) + "</tool_call>"
-
- def _append_history(self, hist, tool_call, tool_res):
- hist.append(
- {
- "role": "assistant",
- "tool_calls": [
- {
- "index": tool_call.index,
- "id": tool_call.id,
- "function": {
- "name": tool_call.function.name,
- "arguments": tool_call.function.arguments,
- },
- "type": "function",
- },
- ],
- }
- )
- try:
- if isinstance(tool_res, dict):
- tool_res = json.dumps(tool_res, ensure_ascii=False)
- finally:
- hist.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_res)})
- return hist
-
- def bind_tools(self, toolcall_session, tools):
- if not (toolcall_session and tools):
- return
- self.is_tools = True
- self.toolcall_session = toolcall_session
- self.tools = tools
-
- def chat_with_tools(self, system: str, history: list, gen_conf: dict={}):
- gen_conf = self._clean_conf(gen_conf)
- if system:
- history.insert(0, {"role": "system", "content": system})
-
- ans = ""
- tk_count = 0
- hist = deepcopy(history)
- # Implement exponential backoff retry strategy
- for attempt in range(self.max_retries + 1):
- history = hist
- try:
- for _ in range(self.max_rounds+1):
- logging.info(f"{self.tools=}")
- response = self.client.chat.completions.create(model=self.model_name, messages=history, tools=self.tools, tool_choice="auto", **gen_conf)
- tk_count += self.total_token_count(response)
- if any([not response.choices, not response.choices[0].message]):
- raise Exception(f"500 response structure error. Response: {response}")
-
- if not hasattr(response.choices[0].message, "tool_calls") or not response.choices[0].message.tool_calls:
- if hasattr(response.choices[0].message, "reasoning_content") and response.choices[0].message.reasoning_content:
- ans += "<think>" + response.choices[0].message.reasoning_content + "</think>"
-
- ans += response.choices[0].message.content
- if response.choices[0].finish_reason == "length":
- ans = self._length_stop(ans)
-
- return ans, tk_count
-
- for tool_call in response.choices[0].message.tool_calls:
- logging.info(f"Response {tool_call=}")
- name = tool_call.function.name
- try:
- args = json_repair.loads(tool_call.function.arguments)
- tool_response = self.toolcall_session.tool_call(name, args)
- history = self._append_history(history, tool_call, tool_response)
- ans += self._verbose_tool_use(name, args, tool_response)
- except Exception as e:
- logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
- history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)})
- ans += self._verbose_tool_use(name, {}, str(e))
-
- logging.warning( f"Exceed max rounds: {self.max_rounds}")
- history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"})
- response, token_count = self._chat(history, gen_conf)
- ans += response
- tk_count += token_count
- return ans, tk_count
- except Exception as e:
- e = self._exceptions(e, attempt)
- if e:
- return e, tk_count
-
- assert False, "Shouldn't be here."
-
- def chat(self, system, history, gen_conf={}, **kwargs):
- if system:
- history.insert(0, {"role": "system", "content": system})
- gen_conf = self._clean_conf(gen_conf)
-
- # Implement exponential backoff retry strategy
- for attempt in range(self.max_retries + 1):
- try:
- return self._chat(history, gen_conf, **kwargs)
- except Exception as e:
- e = self._exceptions(e, attempt)
- if e:
- return e, 0
- assert False, "Shouldn't be here."
-
- def _wrap_toolcall_message(self, stream):
- final_tool_calls = {}
-
- for chunk in stream:
- for tool_call in chunk.choices[0].delta.tool_calls or []:
- index = tool_call.index
-
- if index not in final_tool_calls:
- final_tool_calls[index] = tool_call
-
- final_tool_calls[index].function.arguments += tool_call.function.arguments
-
- return final_tool_calls
-
- def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict={}):
- gen_conf = self._clean_conf(gen_conf)
- tools = self.tools
- if system:
- history.insert(0, {"role": "system", "content": system})
-
- total_tokens = 0
- hist = deepcopy(history)
- # Implement exponential backoff retry strategy
- for attempt in range(self.max_retries + 1):
- history = hist
- try:
- for _ in range(self.max_rounds+1):
- reasoning_start = False
- logging.info(f"{tools=}")
- response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, tools=tools, tool_choice="auto", **gen_conf)
- final_tool_calls = {}
- answer = ""
- for resp in response:
- if resp.choices[0].delta.tool_calls:
- for tool_call in resp.choices[0].delta.tool_calls or []:
- index = tool_call.index
-
- if index not in final_tool_calls:
- if not tool_call.function.arguments:
- tool_call.function.arguments = ""
- final_tool_calls[index] = tool_call
- else:
- final_tool_calls[index].function.arguments += tool_call.function.arguments if tool_call.function.arguments else ""
- continue
-
- if any([not resp.choices, not resp.choices[0].delta, not hasattr(resp.choices[0].delta, "content")]):
- raise Exception("500 response structure error.")
-
- if not resp.choices[0].delta.content:
- resp.choices[0].delta.content = ""
-
- if hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content:
- ans = ""
- if not reasoning_start:
- reasoning_start = True
- ans = "<think>"
- ans += resp.choices[0].delta.reasoning_content + "</think>"
- yield ans
- else:
- reasoning_start = False
- answer += resp.choices[0].delta.content
- yield resp.choices[0].delta.content
-
- tol = self.total_token_count(resp)
- if not tol:
- total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
- else:
- total_tokens += tol
-
- finish_reason = resp.choices[0].finish_reason if hasattr(resp.choices[0], "finish_reason") else ""
- if finish_reason == "length":
- yield self._length_stop("")
-
- if answer:
- yield total_tokens
- return
-
- for tool_call in final_tool_calls.values():
- name = tool_call.function.name
- try:
- args = json_repair.loads(tool_call.function.arguments)
- yield self._verbose_tool_use(name, args, "Begin to call...")
- tool_response = self.toolcall_session.tool_call(name, args)
- history = self._append_history(history, tool_call, tool_response)
- yield self._verbose_tool_use(name, args, tool_response)
- except Exception as e:
- logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
- history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)})
- yield self._verbose_tool_use(name, {}, str(e))
-
- logging.warning( f"Exceed max rounds: {self.max_rounds}")
- history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"})
- response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
- for resp in response:
- if any([not resp.choices, not resp.choices[0].delta, not hasattr(resp.choices[0].delta, "content")]):
- raise Exception("500 response structure error.")
- if not resp.choices[0].delta.content:
- resp.choices[0].delta.content = ""
- continue
- tol = self.total_token_count(resp)
- if not tol:
- total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
- else:
- total_tokens += tol
- answer += resp.choices[0].delta.content
- yield resp.choices[0].delta.content
-
- yield total_tokens
- return
-
- except Exception as e:
- e = self._exceptions(e, attempt)
- if e:
- yield e
- yield total_tokens
- return
-
- assert False, "Shouldn't be here."
-
- def chat_streamly(self, system, history, gen_conf: dict={}, **kwargs):
- if system:
- history.insert(0, {"role": "system", "content": system})
- gen_conf = self._clean_conf(gen_conf)
- ans = ""
- total_tokens = 0
- try:
- for delta_ans, tol in self._chat_streamly(history, gen_conf, **kwargs):
- yield delta_ans
- total_tokens += tol
- except openai.APIError as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
- def total_token_count(self, resp):
- try:
- return resp.usage.total_tokens
- except Exception:
- pass
- try:
- return resp["usage"]["total_tokens"]
- except Exception:
- pass
- return 0
-
- def _calculate_dynamic_ctx(self, history):
- """Calculate dynamic context window size"""
-
- def count_tokens(text):
- """Calculate token count for text"""
- # Simple calculation: 1 token per ASCII character
- # 2 tokens for non-ASCII characters (Chinese, Japanese, Korean, etc.)
- total = 0
- for char in text:
- if ord(char) < 128: # ASCII characters
- total += 1
- else: # Non-ASCII characters (Chinese, Japanese, Korean, etc.)
- total += 2
- return total
-
- # Calculate total tokens for all messages
- total_tokens = 0
- for message in history:
- content = message.get("content", "")
- # Calculate content tokens
- content_tokens = count_tokens(content)
- # Add role marker token overhead
- role_tokens = 4
- total_tokens += content_tokens + role_tokens
-
- # Apply 1.2x buffer ratio
- total_tokens_with_buffer = int(total_tokens * 1.2)
-
- if total_tokens_with_buffer <= 8192:
- ctx_size = 8192
- else:
- ctx_multiplier = (total_tokens_with_buffer // 8192) + 1
- ctx_size = ctx_multiplier * 8192
-
- return ctx_size
-
-
- class GptTurbo(Base):
- _FACTORY_NAME = "OpenAI"
-
- def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1", **kwargs):
- if not base_url:
- base_url = "https://api.openai.com/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class MoonshotChat(Base):
- _FACTORY_NAME = "Moonshot"
-
- def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1", **kwargs):
- if not base_url:
- base_url = "https://api.moonshot.cn/v1"
- super().__init__(key, model_name, base_url)
-
-
- class XinferenceChat(Base):
- _FACTORY_NAME = "Xinference"
-
- def __init__(self, key=None, model_name="", base_url="", **kwargs):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class HuggingFaceChat(Base):
- _FACTORY_NAME = "HuggingFace"
-
- def __init__(self, key=None, model_name="", base_url="", **kwargs):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- super().__init__(key, model_name.split("___")[0], base_url, **kwargs)
-
-
- class ModelScopeChat(Base):
- _FACTORY_NAME = "ModelScope"
-
- def __init__(self, key=None, model_name="", base_url="", **kwargs):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- super().__init__(key, model_name.split("___")[0], base_url, **kwargs)
-
-
- class DeepSeekChat(Base):
- _FACTORY_NAME = "DeepSeek"
-
- def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1", **kwargs):
- if not base_url:
- base_url = "https://api.deepseek.com/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class AzureChat(Base):
- _FACTORY_NAME = "Azure-OpenAI"
-
- def __init__(self, key, model_name, base_url, **kwargs):
- api_key = json.loads(key).get("api_key", "")
- api_version = json.loads(key).get("api_version", "2024-02-01")
- super().__init__(key, model_name, base_url, **kwargs)
- self.client = AzureOpenAI(api_key=api_key, azure_endpoint=base_url, api_version=api_version)
- self.model_name = model_name
-
-
- class BaiChuanChat(Base):
- _FACTORY_NAME = "BaiChuan"
-
- def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1", **kwargs):
- if not base_url:
- base_url = "https://api.baichuan-ai.com/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
- @staticmethod
- def _format_params(params):
- return {
- "temperature": params.get("temperature", 0.3),
- "top_p": params.get("top_p", 0.85),
- }
-
- def _clean_conf(self, gen_conf):
- return {
- "temperature": gen_conf.get("temperature", 0.3),
- "top_p": gen_conf.get("top_p", 0.85),
- }
-
- def _chat(self, history, gen_conf={}, **kwargs):
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]},
- **gen_conf,
- )
- ans = response.choices[0].message.content.strip()
- if response.choices[0].finish_reason == "length":
- if is_chinese([ans]):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- return ans, self.total_token_count(response)
-
- def chat_streamly(self, system, history, gen_conf={}, **kwargs):
- if system:
- history.insert(0, {"role": "system", "content": system})
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- ans = ""
- total_tokens = 0
- try:
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]},
- stream=True,
- **self._format_params(gen_conf),
- )
- for resp in response:
- if not resp.choices:
- continue
- if not resp.choices[0].delta.content:
- resp.choices[0].delta.content = ""
- ans = resp.choices[0].delta.content
- tol = self.total_token_count(resp)
- if not tol:
- total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
- else:
- total_tokens = tol
- if resp.choices[0].finish_reason == "length":
- if is_chinese([ans]):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class xAIChat(Base):
- _FACTORY_NAME = "xAI"
-
- def __init__(self, key, model_name="grok-3", base_url=None, **kwargs):
- if not base_url:
- base_url = "https://api.x.ai/v1"
- super().__init__(key, model_name, base_url=base_url, **kwargs)
- return
-
-
- class QWenChat(Base):
- _FACTORY_NAME = "Tongyi-Qianwen"
-
- def __init__(self, key, model_name=Generation.Models.qwen_turbo, base_url=None, **kwargs):
- if not base_url:
- base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1"
- super().__init__(key, model_name, base_url=base_url, **kwargs)
- return
-
-
- class ZhipuChat(Base):
- _FACTORY_NAME = "ZHIPU-AI"
-
- def __init__(self, key, model_name="glm-3-turbo", base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- self.client = ZhipuAI(api_key=key)
- self.model_name = model_name
-
- def _clean_conf(self, gen_conf):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- if "presence_penalty" in gen_conf:
- del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- del gen_conf["frequency_penalty"]
- return gen_conf
-
- def chat_with_tools(self, system: str, history: list, gen_conf: dict):
- if "presence_penalty" in gen_conf:
- del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- del gen_conf["frequency_penalty"]
-
- return super().chat_with_tools(system, history, gen_conf)
-
- def chat_streamly(self, system, history, gen_conf={}, **kwargs):
- if system:
- history.insert(0, {"role": "system", "content": system})
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- if "presence_penalty" in gen_conf:
- del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- del gen_conf["frequency_penalty"]
- ans = ""
- tk_count = 0
- try:
- logging.info(json.dumps(history, ensure_ascii=False, indent=2))
- response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
- for resp in response:
- if not resp.choices[0].delta.content:
- continue
- delta = resp.choices[0].delta.content
- ans = delta
- if resp.choices[0].finish_reason == "length":
- if is_chinese(ans):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- tk_count = self.total_token_count(resp)
- if resp.choices[0].finish_reason == "stop":
- tk_count = self.total_token_count(resp)
- yield ans
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield tk_count
-
- def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict):
- if "presence_penalty" in gen_conf:
- del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- del gen_conf["frequency_penalty"]
-
- return super().chat_streamly_with_tools(system, history, gen_conf)
-
-
- class OllamaChat(Base):
- _FACTORY_NAME = "Ollama"
-
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- self.client = Client(host=base_url) if not key or key == "x" else Client(host=base_url, headers={"Authorization": f"Bearer {key}"})
- self.model_name = model_name
- self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1)))
-
- def _clean_conf(self, gen_conf):
- options = {}
- if "max_tokens" in gen_conf:
- options["num_predict"] = gen_conf["max_tokens"]
- for k in ["temperature", "top_p", "presence_penalty", "frequency_penalty"]:
- if k not in gen_conf:
- continue
- options[k] = gen_conf[k]
- return options
-
- def _chat(self, history, gen_conf={}, **kwargs):
- # Calculate context size
- ctx_size = self._calculate_dynamic_ctx(history)
-
- gen_conf["num_ctx"] = ctx_size
- response = self.client.chat(model=self.model_name, messages=history, options=gen_conf, keep_alive=self.keep_alive)
- ans = response["message"]["content"].strip()
- token_count = response.get("eval_count", 0) + response.get("prompt_eval_count", 0)
- return ans, token_count
-
- def chat_streamly(self, system, history, gen_conf={}, **kwargs):
- if system:
- history.insert(0, {"role": "system", "content": system})
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- try:
- # Calculate context size
- ctx_size = self._calculate_dynamic_ctx(history)
- options = {"num_ctx": ctx_size}
- if "temperature" in gen_conf:
- options["temperature"] = gen_conf["temperature"]
- if "max_tokens" in gen_conf:
- options["num_predict"] = gen_conf["max_tokens"]
- if "top_p" in gen_conf:
- options["top_p"] = gen_conf["top_p"]
- if "presence_penalty" in gen_conf:
- options["presence_penalty"] = gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- options["frequency_penalty"] = gen_conf["frequency_penalty"]
-
- ans = ""
- try:
- response = self.client.chat(model=self.model_name, messages=history, stream=True, options=options, keep_alive=self.keep_alive)
- for resp in response:
- if resp["done"]:
- token_count = resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
- yield token_count
- ans = resp["message"]["content"]
- yield ans
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
- yield 0
- except Exception as e:
- yield "**ERROR**: " + str(e)
- yield 0
-
-
- class LocalAIChat(Base):
- _FACTORY_NAME = "LocalAI"
-
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- self.client = OpenAI(api_key="empty", base_url=base_url)
- self.model_name = model_name.split("___")[0]
-
-
- class LocalLLM(Base):
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
- from jina import Client
-
- self.client = Client(port=12345, protocol="grpc", asyncio=True)
-
- def _prepare_prompt(self, system, history, gen_conf):
- from rag.svr.jina_server import Prompt
-
- if system:
- history.insert(0, {"role": "system", "content": system})
- return Prompt(message=history, gen_conf=gen_conf)
-
- def _stream_response(self, endpoint, prompt):
- from rag.svr.jina_server import Generation
-
- answer = ""
- try:
- res = self.client.stream_doc(on=endpoint, inputs=prompt, return_type=Generation)
- loop = asyncio.get_event_loop()
- try:
- while True:
- answer = loop.run_until_complete(res.__anext__()).text
- yield answer
- except StopAsyncIteration:
- pass
- except Exception as e:
- yield answer + "\n**ERROR**: " + str(e)
- yield num_tokens_from_string(answer)
-
- def chat(self, system, history, gen_conf={}, **kwargs):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- prompt = self._prepare_prompt(system, history, gen_conf)
- chat_gen = self._stream_response("/chat", prompt)
- ans = next(chat_gen)
- total_tokens = next(chat_gen)
- return ans, total_tokens
-
- def chat_streamly(self, system, history, gen_conf={}, **kwargs):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- prompt = self._prepare_prompt(system, history, gen_conf)
- return self._stream_response("/stream", prompt)
-
-
- class VolcEngineChat(Base):
- _FACTORY_NAME = "VolcEngine"
-
- def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3", **kwargs):
- """
- Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
- Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use
- model_name is for display only
- """
- base_url = base_url if base_url else "https://ark.cn-beijing.volces.com/api/v3"
- ark_api_key = json.loads(key).get("ark_api_key", "")
- model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
- super().__init__(ark_api_key, model_name, base_url, **kwargs)
-
-
- class MiniMaxChat(Base):
- _FACTORY_NAME = "MiniMax"
-
- def __init__(self, key, model_name, base_url="https://api.minimax.chat/v1/text/chatcompletion_v2", **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- if not base_url:
- base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
- self.base_url = base_url
- self.model_name = model_name
- self.api_key = key
-
- def _clean_conf(self, gen_conf):
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- return gen_conf
-
- def _chat(self, history, gen_conf):
- headers = {
- "Authorization": f"Bearer {self.api_key}",
- "Content-Type": "application/json",
- }
- payload = json.dumps({"model": self.model_name, "messages": history, **gen_conf})
- response = requests.request("POST", url=self.base_url, headers=headers, data=payload)
- response = response.json()
- ans = response["choices"][0]["message"]["content"].strip()
- if response["choices"][0]["finish_reason"] == "length":
- if is_chinese(ans):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- return ans, self.total_token_count(response)
-
- def chat_streamly(self, system, history, gen_conf):
- if system:
- history.insert(0, {"role": "system", "content": system})
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- ans = ""
- total_tokens = 0
- try:
- headers = {
- "Authorization": f"Bearer {self.api_key}",
- "Content-Type": "application/json",
- }
- payload = json.dumps(
- {
- "model": self.model_name,
- "messages": history,
- "stream": True,
- **gen_conf,
- }
- )
- response = requests.request(
- "POST",
- url=self.base_url,
- headers=headers,
- data=payload,
- )
- for resp in response.text.split("\n\n")[:-1]:
- resp = json.loads(resp[6:])
- text = ""
- if "choices" in resp and "delta" in resp["choices"][0]:
- text = resp["choices"][0]["delta"]["content"]
- ans = text
- tol = self.total_token_count(resp)
- if not tol:
- total_tokens += num_tokens_from_string(text)
- else:
- total_tokens = tol
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class MistralChat(Base):
- _FACTORY_NAME = "Mistral"
-
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- from mistralai.client import MistralClient
-
- self.client = MistralClient(api_key=key)
- self.model_name = model_name
-
- def _clean_conf(self, gen_conf):
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- return gen_conf
-
- def _chat(self, history, gen_conf={}, **kwargs):
- response = self.client.chat(model=self.model_name, messages=history, **gen_conf)
- ans = response.choices[0].message.content
- if response.choices[0].finish_reason == "length":
- if is_chinese(ans):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- return ans, self.total_token_count(response)
-
- def chat_streamly(self, system, history, gen_conf={}, **kwargs):
- if system:
- history.insert(0, {"role": "system", "content": system})
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- ans = ""
- total_tokens = 0
- try:
- response = self.client.chat_stream(model=self.model_name, messages=history, **gen_conf, **kwargs)
- for resp in response:
- if not resp.choices or not resp.choices[0].delta.content:
- continue
- ans = resp.choices[0].delta.content
- total_tokens += 1
- if resp.choices[0].finish_reason == "length":
- if is_chinese(ans):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- yield ans
-
- except openai.APIError as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class BedrockChat(Base):
- _FACTORY_NAME = "Bedrock"
-
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- import boto3
-
- self.bedrock_ak = json.loads(key).get("bedrock_ak", "")
- self.bedrock_sk = json.loads(key).get("bedrock_sk", "")
- self.bedrock_region = json.loads(key).get("bedrock_region", "")
- self.model_name = model_name
-
- if self.bedrock_ak == "" or self.bedrock_sk == "" or self.bedrock_region == "":
- # Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
- self.client = boto3.client("bedrock-runtime")
- else:
- self.client = boto3.client(service_name="bedrock-runtime", region_name=self.bedrock_region, aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
-
- def _clean_conf(self, gen_conf):
- for k in list(gen_conf.keys()):
- if k not in ["temperature"]:
- del gen_conf[k]
- return gen_conf
-
- def _chat(self, history, gen_conf={}, **kwargs):
- system = history[0]["content"] if history and history[0]["role"] == "system" else ""
- hist = []
- for item in history:
- if item["role"] == "system":
- continue
- hist.append(deepcopy(item))
- if not isinstance(hist[-1]["content"], list) and not isinstance(hist[-1]["content"], tuple):
- hist[-1]["content"] = [{"text": hist[-1]["content"]}]
- # Send the message to the model, using a basic inference configuration.
- response = self.client.converse(
- modelId=self.model_name,
- messages=hist,
- inferenceConfig=gen_conf,
- system=[{"text": (system if system else "Answer the user's message.")}],
- )
-
- # Extract and print the response text.
- ans = response["output"]["message"]["content"][0]["text"]
- return ans, num_tokens_from_string(ans)
-
- def chat_streamly(self, system, history, gen_conf={}, **kwargs):
- from botocore.exceptions import ClientError
-
- for k in list(gen_conf.keys()):
- if k not in ["temperature"]:
- del gen_conf[k]
- for item in history:
- if not isinstance(item["content"], list) and not isinstance(item["content"], tuple):
- item["content"] = [{"text": item["content"]}]
-
- if self.model_name.split(".")[0] == "ai21":
- try:
- response = self.client.converse(modelId=self.model_name, messages=history, inferenceConfig=gen_conf, system=[{"text": (system if system else "Answer the user's message.")}])
- ans = response["output"]["message"]["content"][0]["text"]
- return ans, num_tokens_from_string(ans)
-
- except (ClientError, Exception) as e:
- return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
-
- ans = ""
- try:
- # Send the message to the model, using a basic inference configuration.
- streaming_response = self.client.converse_stream(
- modelId=self.model_name, messages=history, inferenceConfig=gen_conf, system=[{"text": (system if system else "Answer the user's message.")}]
- )
-
- # Extract and print the streamed response text in real-time.
- for resp in streaming_response["stream"]:
- if "contentBlockDelta" in resp:
- ans = resp["contentBlockDelta"]["delta"]["text"]
- yield ans
-
- except (ClientError, Exception) as e:
- yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"
-
- yield num_tokens_from_string(ans)
-
-
- class GeminiChat(Base):
- _FACTORY_NAME = "Gemini"
-
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- from google.generativeai import GenerativeModel, client
-
- client.configure(api_key=key)
- _client = client.get_default_generative_client()
- self.model_name = "models/" + model_name
- self.model = GenerativeModel(model_name=self.model_name)
- self.model._client = _client
-
- def _clean_conf(self, gen_conf):
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- # if max_tokens exists, rename it to max_output_tokens to match Gemini's API
- if k == "max_tokens":
- gen_conf["max_output_tokens"] = gen_conf.pop("max_tokens")
- return gen_conf
-
- def _chat(self, history, gen_conf={}, **kwargs):
- from google.generativeai.types import content_types
-
- system = history[0]["content"] if history and history[0]["role"] == "system" else ""
- hist = []
- for item in history:
- if item["role"] == "system":
- continue
- hist.append(deepcopy(item))
- item = hist[-1]
- if "role" in item and item["role"] == "assistant":
- item["role"] = "model"
- if "role" in item and item["role"] == "system":
- item["role"] = "user"
- if "content" in item:
- item["parts"] = item.pop("content")
-
- if system:
- self.model._system_instruction = content_types.to_content(system)
- response = self.model.generate_content(hist, generation_config=gen_conf)
- ans = response.text
- return ans, response.usage_metadata.total_token_count
-
- def chat_streamly(self, system, history, gen_conf={}, **kwargs):
- from google.generativeai.types import content_types
-
- gen_conf = self._clean_conf(gen_conf)
- if system:
- self.model._system_instruction = content_types.to_content(system)
- for item in history:
- if "role" in item and item["role"] == "assistant":
- item["role"] = "model"
- if "content" in item:
- item["parts"] = item.pop("content")
- ans = ""
- try:
- response = self.model.generate_content(history, generation_config=gen_conf, stream=True)
- for resp in response:
- ans = resp.text
- yield ans
-
- yield response._chunks[-1].usage_metadata.total_token_count
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield 0
-
-
- class GroqChat(Base):
- _FACTORY_NAME = "Groq"
-
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- from groq import Groq
-
- self.client = Groq(api_key=key)
- self.model_name = model_name
-
- def _clean_conf(self, gen_conf):
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- return gen_conf
-
- def chat_streamly(self, system, history, gen_conf={}, **kwargs):
- if system:
- history.insert(0, {"role": "system", "content": system})
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_tokens"]:
- del gen_conf[k]
- ans = ""
- total_tokens = 0
- try:
- response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
- for resp in response:
- if not resp.choices or not resp.choices[0].delta.content:
- continue
- ans = resp.choices[0].delta.content
- total_tokens += 1
- if resp.choices[0].finish_reason == "length":
- if is_chinese(ans):
- ans += LENGTH_NOTIFICATION_CN
- else:
- ans += LENGTH_NOTIFICATION_EN
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- ## openrouter
- class OpenRouterChat(Base):
- _FACTORY_NAME = "OpenRouter"
-
- def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1", **kwargs):
- if not base_url:
- base_url = "https://openrouter.ai/api/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class StepFunChat(Base):
- _FACTORY_NAME = "StepFun"
-
- def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1", **kwargs):
- if not base_url:
- base_url = "https://api.stepfun.com/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class NvidiaChat(Base):
- _FACTORY_NAME = "NVIDIA"
-
- def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1", **kwargs):
- if not base_url:
- base_url = "https://integrate.api.nvidia.com/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class LmStudioChat(Base):
- _FACTORY_NAME = "LM-Studio"
-
- def __init__(self, key, model_name, base_url, **kwargs):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- super().__init__(key, model_name, base_url, **kwargs)
- self.client = OpenAI(api_key="lm-studio", base_url=base_url)
- self.model_name = model_name
-
-
- class OpenAI_APIChat(Base):
- _FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
-
- def __init__(self, key, model_name, base_url, **kwargs):
- if not base_url:
- raise ValueError("url cannot be None")
- model_name = model_name.split("___")[0]
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class PPIOChat(Base):
- _FACTORY_NAME = "PPIO"
-
- def __init__(self, key, model_name, base_url="https://api.ppinfra.com/v3/openai", **kwargs):
- if not base_url:
- base_url = "https://api.ppinfra.com/v3/openai"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class CoHereChat(Base):
- _FACTORY_NAME = "Cohere"
-
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- from cohere import Client
-
- self.client = Client(api_key=key)
- self.model_name = model_name
-
- def _clean_conf(self, gen_conf):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- if "top_p" in gen_conf:
- gen_conf["p"] = gen_conf.pop("top_p")
- if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
- gen_conf.pop("presence_penalty")
- return gen_conf
-
- def _chat(self, history, gen_conf):
- hist = []
- for item in history:
- hist.append(deepcopy(item))
- item = hist[-1]
- if "role" in item and item["role"] == "user":
- item["role"] = "USER"
- if "role" in item and item["role"] == "assistant":
- item["role"] = "CHATBOT"
- if "content" in item:
- item["message"] = item.pop("content")
- mes = hist.pop()["message"]
- response = self.client.chat(model=self.model_name, chat_history=hist, message=mes, **gen_conf)
- ans = response.text
- if response.finish_reason == "MAX_TOKENS":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return (
- ans,
- response.meta.tokens.input_tokens + response.meta.tokens.output_tokens,
- )
-
- def chat_streamly(self, system, history, gen_conf={}, **kwargs):
- if system:
- history.insert(0, {"role": "system", "content": system})
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- if "top_p" in gen_conf:
- gen_conf["p"] = gen_conf.pop("top_p")
- if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
- gen_conf.pop("presence_penalty")
- for item in history:
- if "role" in item and item["role"] == "user":
- item["role"] = "USER"
- if "role" in item and item["role"] == "assistant":
- item["role"] = "CHATBOT"
- if "content" in item:
- item["message"] = item.pop("content")
- mes = history.pop()["message"]
- ans = ""
- total_tokens = 0
- try:
- response = self.client.chat_stream(model=self.model_name, chat_history=history, message=mes, **gen_conf)
- for resp in response:
- if resp.event_type == "text-generation":
- ans = resp.text
- total_tokens += num_tokens_from_string(resp.text)
- elif resp.event_type == "stream-end":
- if resp.finish_reason == "MAX_TOKENS":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class LeptonAIChat(Base):
- _FACTORY_NAME = "LeptonAI"
-
- def __init__(self, key, model_name, base_url=None, **kwargs):
- if not base_url:
- base_url = urljoin("https://" + model_name + ".lepton.run", "api/v1")
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class TogetherAIChat(Base):
- _FACTORY_NAME = "TogetherAI"
-
- def __init__(self, key, model_name, base_url="https://api.together.xyz/v1", **kwargs):
- if not base_url:
- base_url = "https://api.together.xyz/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class PerfXCloudChat(Base):
- _FACTORY_NAME = "PerfXCloud"
-
- def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1", **kwargs):
- if not base_url:
- base_url = "https://cloud.perfxlab.cn/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class UpstageChat(Base):
- _FACTORY_NAME = "Upstage"
-
- def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar", **kwargs):
- if not base_url:
- base_url = "https://api.upstage.ai/v1/solar"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class NovitaAIChat(Base):
- _FACTORY_NAME = "NovitaAI"
-
- def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai", **kwargs):
- if not base_url:
- base_url = "https://api.novita.ai/v3/openai"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class SILICONFLOWChat(Base):
- _FACTORY_NAME = "SILICONFLOW"
-
- def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1", **kwargs):
- if not base_url:
- base_url = "https://api.siliconflow.cn/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class YiChat(Base):
- _FACTORY_NAME = "01.AI"
-
- def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1", **kwargs):
- if not base_url:
- base_url = "https://api.lingyiwanwu.com/v1"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class GiteeChat(Base):
- _FACTORY_NAME = "GiteeAI"
-
- def __init__(self, key, model_name, base_url="https://ai.gitee.com/v1/", **kwargs):
- if not base_url:
- base_url = "https://ai.gitee.com/v1/"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class ReplicateChat(Base):
- _FACTORY_NAME = "Replicate"
-
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- from replicate.client import Client
-
- self.model_name = model_name
- self.client = Client(api_token=key)
-
- def _chat(self, history, gen_conf={}, **kwargs):
- system = history[0]["content"] if history and history[0]["role"] == "system" else ""
- prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:] if item["role"] != "system"])
- response = self.client.run(
- self.model_name,
- input={"system_prompt": system, "prompt": prompt, **gen_conf},
- )
- ans = "".join(response)
- return ans, num_tokens_from_string(ans)
-
- def chat_streamly(self, system, history, gen_conf={}, **kwargs):
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:]])
- ans = ""
- try:
- response = self.client.run(
- self.model_name,
- input={"system_prompt": system, "prompt": prompt, **gen_conf},
- )
- for resp in response:
- ans = resp
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield num_tokens_from_string(ans)
-
-
- class HunyuanChat(Base):
- _FACTORY_NAME = "Tencent Hunyuan"
-
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- from tencentcloud.common import credential
- from tencentcloud.hunyuan.v20230901 import hunyuan_client
-
- key = json.loads(key)
- sid = key.get("hunyuan_sid", "")
- sk = key.get("hunyuan_sk", "")
- cred = credential.Credential(sid, sk)
- self.model_name = model_name
- self.client = hunyuan_client.HunyuanClient(cred, "")
-
- def _clean_conf(self, gen_conf):
- _gen_conf = {}
- if "temperature" in gen_conf:
- _gen_conf["Temperature"] = gen_conf["temperature"]
- if "top_p" in gen_conf:
- _gen_conf["TopP"] = gen_conf["top_p"]
- return _gen_conf
-
- def _chat(self, history, gen_conf={}, **kwargs):
- from tencentcloud.hunyuan.v20230901 import models
-
- hist = [{k.capitalize(): v for k, v in item.items()} for item in history]
- req = models.ChatCompletionsRequest()
- params = {"Model": self.model_name, "Messages": hist, **gen_conf}
- req.from_json_string(json.dumps(params))
- response = self.client.ChatCompletions(req)
- ans = response.Choices[0].Message.Content
- return ans, response.Usage.TotalTokens
-
- def chat_streamly(self, system, history, gen_conf={}, **kwargs):
- from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
- TencentCloudSDKException,
- )
- from tencentcloud.hunyuan.v20230901 import models
-
- _gen_conf = {}
- _history = [{k.capitalize(): v for k, v in item.items()} for item in history]
- if system:
- _history.insert(0, {"Role": "system", "Content": system})
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- if "temperature" in gen_conf:
- _gen_conf["Temperature"] = gen_conf["temperature"]
- if "top_p" in gen_conf:
- _gen_conf["TopP"] = gen_conf["top_p"]
- req = models.ChatCompletionsRequest()
- params = {
- "Model": self.model_name,
- "Messages": _history,
- "Stream": True,
- **_gen_conf,
- }
- req.from_json_string(json.dumps(params))
- ans = ""
- total_tokens = 0
- try:
- response = self.client.ChatCompletions(req)
- for resp in response:
- resp = json.loads(resp["data"])
- if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]:
- continue
- ans = resp["Choices"][0]["Delta"]["Content"]
- total_tokens += 1
-
- yield ans
-
- except TencentCloudSDKException as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class SparkChat(Base):
- _FACTORY_NAME = "XunFei Spark"
-
- def __init__(self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1", **kwargs):
- if not base_url:
- base_url = "https://spark-api-open.xf-yun.com/v1"
- model2version = {
- "Spark-Max": "generalv3.5",
- "Spark-Lite": "general",
- "Spark-Pro": "generalv3",
- "Spark-Pro-128K": "pro-128k",
- "Spark-4.0-Ultra": "4.0Ultra",
- }
- version2model = {v: k for k, v in model2version.items()}
- assert model_name in model2version or model_name in version2model, f"The given model name is not supported yet. Support: {list(model2version.keys())}"
- if model_name in model2version:
- model_version = model2version[model_name]
- else:
- model_version = model_name
- super().__init__(key, model_version, base_url, **kwargs)
-
-
- class BaiduYiyanChat(Base):
- _FACTORY_NAME = "BaiduYiyan"
-
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- import qianfan
-
- key = json.loads(key)
- ak = key.get("yiyan_ak", "")
- sk = key.get("yiyan_sk", "")
- self.client = qianfan.ChatCompletion(ak=ak, sk=sk)
- self.model_name = model_name.lower()
-
- def _clean_conf(self, gen_conf):
- gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- return gen_conf
-
- def _chat(self, history, gen_conf):
- system = history[0]["content"] if history and history[0]["role"] == "system" else ""
- response = self.client.do(model=self.model_name, messages=[h for h in history if h["role"] != "system"], system=system, **gen_conf).body
- ans = response["result"]
- return ans, self.total_token_count(response)
-
- def chat_streamly(self, system, history, gen_conf={}, **kwargs):
- gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- ans = ""
- total_tokens = 0
-
- try:
- response = self.client.do(model=self.model_name, messages=history, system=system, stream=True, **gen_conf)
- for resp in response:
- resp = resp.body
- ans = resp["result"]
- total_tokens = self.total_token_count(resp)
-
- yield ans
-
- except Exception as e:
- return ans + "\n**ERROR**: " + str(e), 0
-
- yield total_tokens
-
-
- class AnthropicChat(Base):
- _FACTORY_NAME = "Anthropic"
-
- def __init__(self, key, model_name, base_url="https://api.anthropic.com/v1/", **kwargs):
- if not base_url:
- base_url = "https://api.anthropic.com/v1/"
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
-
- class GoogleChat(Base):
- _FACTORY_NAME = "Google Cloud"
-
- def __init__(self, key, model_name, base_url=None, **kwargs):
- super().__init__(key, model_name, base_url=base_url, **kwargs)
-
- import base64
-
- from google.oauth2 import service_account
-
- key = json.loads(key)
- access_token = json.loads(base64.b64decode(key.get("google_service_account_key", "")))
- project_id = key.get("google_project_id", "")
- region = key.get("google_region", "")
-
- scopes = ["https://www.googleapis.com/auth/cloud-platform"]
- self.model_name = model_name
-
- if "claude" in self.model_name:
- from anthropic import AnthropicVertex
- from google.auth.transport.requests import Request
-
- if access_token:
- credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
- request = Request()
- credits.refresh(request)
- token = credits.token
- self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token)
- else:
- self.client = AnthropicVertex(region=region, project_id=project_id)
- else:
- import vertexai.generative_models as glm
- from google.cloud import aiplatform
-
- if access_token:
- credits = service_account.Credentials.from_service_account_info(access_token)
- aiplatform.init(credentials=credits, project=project_id, location=region)
- else:
- aiplatform.init(project=project_id, location=region)
- self.client = glm.GenerativeModel(model_name=self.model_name)
-
- def _clean_conf(self, gen_conf):
- if "claude" in self.model_name:
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- else:
- if "max_tokens" in gen_conf:
- gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_output_tokens"]:
- del gen_conf[k]
- return gen_conf
-
- def _chat(self, history, gen_conf={}, **kwargs):
- system = history[0]["content"] if history and history[0]["role"] == "system" else ""
- if "claude" in self.model_name:
- response = self.client.messages.create(
- model=self.model_name,
- messages=[h for h in history if h["role"] != "system"],
- system=system,
- stream=False,
- **gen_conf,
- ).json()
- ans = response["content"][0]["text"]
- if response["stop_reason"] == "max_tokens":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return (
- ans,
- response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
- )
-
- self.client._system_instruction = system
- hist = []
- for item in history:
- if item["role"] == "system":
- continue
- hist.append(deepcopy(item))
- item = hist[-1]
- if "role" in item and item["role"] == "assistant":
- item["role"] = "model"
- if "content" in item:
- item["parts"] = [
- {
- "text": item.pop("content"),
- }
- ]
-
- response = self.client.generate_content(hist, generation_config=gen_conf)
- ans = response.text
- return ans, response.usage_metadata.total_token_count
-
- def chat_streamly(self, system, history, gen_conf={}, **kwargs):
- if "claude" in self.model_name:
- if "max_tokens" in gen_conf:
- del gen_conf["max_tokens"]
- ans = ""
- total_tokens = 0
- try:
- response = self.client.messages.create(
- model=self.model_name,
- messages=history,
- system=system,
- stream=True,
- **gen_conf,
- )
- for res in response.iter_lines():
- res = res.decode("utf-8")
- if "content_block_delta" in res and "data" in res:
- text = json.loads(res[6:])["delta"]["text"]
- ans = text
- total_tokens += num_tokens_from_string(text)
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
- else:
- self.client._system_instruction = system
- if "max_tokens" in gen_conf:
- gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
- for k in list(gen_conf.keys()):
- if k not in ["temperature", "top_p", "max_output_tokens"]:
- del gen_conf[k]
- for item in history:
- if "role" in item and item["role"] == "assistant":
- item["role"] = "model"
- if "content" in item:
- item["parts"] = item.pop("content")
- ans = ""
- try:
- response = self.model.generate_content(history, generation_config=gen_conf, stream=True)
- for resp in response:
- ans = resp.text
- yield ans
-
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield response._chunks[-1].usage_metadata.total_token_count
-
-
- class GPUStackChat(Base):
- _FACTORY_NAME = "GPUStack"
-
- def __init__(self, key=None, model_name="", base_url="", **kwargs):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- super().__init__(key, model_name, base_url, **kwargs)
- class DeepInfraChat(Base):
- _FACTORY_NAME = "DeepInfra"
-
- def __init__(self, key, model_name, base_url="https://api.deepinfra.com/v1/openai", **kwargs):
- if not base_url:
- base_url = "https://api.deepinfra.com/v1/openai"
- super().__init__(key, model_name, base_url, **kwargs)
-
-
- class Ai302Chat(Base):
- _FACTORY_NAME = "302.AI"
-
- def __init__(self, key, model_name, base_url="https://api.302.ai/v1", **kwargs):
- if not base_url:
- base_url = "https://api.302.ai/v1"
- super().__init__(key, model_name, base_url, **kwargs)
|