Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import datetime
  17. from flask import request
  18. from flask_login import login_required, current_user
  19. from elasticsearch_dsl import Q
  20. from rag.nlp import search, huqie, retrievaler
  21. from rag.utils import ELASTICSEARCH, rmSpace
  22. from api.db import LLMType
  23. from api.db.services.kb_service import KnowledgebaseService
  24. from api.db.services.llm_service import TenantLLMService
  25. from api.db.services.user_service import UserTenantService
  26. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  27. from api.db.services.document_service import DocumentService
  28. from api.settings import RetCode
  29. from api.utils.api_utils import get_json_result
  30. import hashlib
  31. import re
  32. @manager.route('/list', methods=['POST'])
  33. @login_required
  34. @validate_request("doc_id")
  35. def list():
  36. req = request.json
  37. doc_id = req["doc_id"]
  38. page = int(req.get("page", 1))
  39. size = int(req.get("size", 30))
  40. question = req.get("keywords", "")
  41. try:
  42. tenant_id = DocumentService.get_tenant_id(req["doc_id"])
  43. if not tenant_id:
  44. return get_data_error_result(retmsg="Tenant not found!")
  45. query = {
  46. "doc_ids": [doc_id], "page": page, "size": size, "question": question
  47. }
  48. if "available_int" in req:
  49. query["available_int"] = int(req["available_int"])
  50. sres = retrievaler.search(query, search.index_name(tenant_id))
  51. res = {"total": sres.total, "chunks": []}
  52. for id in sres.ids:
  53. d = {
  54. "chunk_id": id,
  55. "content_ltks": rmSpace(sres.highlight[id]) if question else sres.field[id]["content_ltks"],
  56. "doc_id": sres.field[id]["doc_id"],
  57. "docnm_kwd": sres.field[id]["docnm_kwd"],
  58. "important_kwd": sres.field[id].get("important_kwd", []),
  59. "img_id": sres.field[id].get("img_id", ""),
  60. "available_int": sres.field[id].get("available_int", 1),
  61. }
  62. res["chunks"].append(d)
  63. return get_json_result(data=res)
  64. except Exception as e:
  65. if str(e).find("not_found") > 0:
  66. return get_json_result(data=False, retmsg=f'Index not found!',
  67. retcode=RetCode.DATA_ERROR)
  68. return server_error_response(e)
  69. @manager.route('/get', methods=['GET'])
  70. @login_required
  71. def get():
  72. chunk_id = request.args["chunk_id"]
  73. try:
  74. tenants = UserTenantService.query(user_id=current_user.id)
  75. if not tenants:
  76. return get_data_error_result(retmsg="Tenant not found!")
  77. res = ELASTICSEARCH.get(
  78. chunk_id, search.index_name(
  79. tenants[0].tenant_id))
  80. if not res.get("found"):
  81. return server_error_response("Chunk not found")
  82. id = res["_id"]
  83. res = res["_source"]
  84. res["chunk_id"] = id
  85. k = []
  86. for n in res.keys():
  87. if re.search(r"(_vec$|_sm_)", n):
  88. k.append(n)
  89. if re.search(r"(_tks|_ltks)", n):
  90. res[n] = rmSpace(res[n])
  91. for n in k:
  92. del res[n]
  93. return get_json_result(data=res)
  94. except Exception as e:
  95. if str(e).find("NotFoundError") >= 0:
  96. return get_json_result(data=False, retmsg=f'Chunk not found!',
  97. retcode=RetCode.DATA_ERROR)
  98. return server_error_response(e)
  99. @manager.route('/set', methods=['POST'])
  100. @login_required
  101. @validate_request("doc_id", "chunk_id", "content_ltks",
  102. "important_kwd")
  103. def set():
  104. req = request.json
  105. d = {"id": req["chunk_id"]}
  106. d["content_ltks"] = huqie.qie(req["content_ltks"])
  107. d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
  108. d["important_kwd"] = req["important_kwd"]
  109. d["important_tks"] = huqie.qie(" ".join(req["important_kwd"]))
  110. if "available_int" in req:
  111. d["available_int"] = req["available_int"]
  112. try:
  113. tenant_id = DocumentService.get_tenant_id(req["doc_id"])
  114. if not tenant_id:
  115. return get_data_error_result(retmsg="Tenant not found!")
  116. embd_mdl = TenantLLMService.model_instance(
  117. tenant_id, LLMType.EMBEDDING.value)
  118. e, doc = DocumentService.get_by_id(req["doc_id"])
  119. if not e:
  120. return get_data_error_result(retmsg="Document not found!")
  121. v, c = embd_mdl.encode([doc.name, req["content_ltks"]])
  122. v = 0.1 * v[0] + 0.9 * v[1]
  123. d["q_%d_vec" % len(v)] = v.tolist()
  124. ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
  125. return get_json_result(data=True)
  126. except Exception as e:
  127. return server_error_response(e)
  128. @manager.route('/switch', methods=['POST'])
  129. @login_required
  130. @validate_request("chunk_ids", "available_int", "doc_id")
  131. def switch():
  132. req = request.json
  133. try:
  134. tenant_id = DocumentService.get_tenant_id(req["doc_id"])
  135. if not tenant_id:
  136. return get_data_error_result(retmsg="Tenant not found!")
  137. if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]],
  138. search.index_name(tenant_id)):
  139. return get_data_error_result(retmsg="Index updating failure")
  140. return get_json_result(data=True)
  141. except Exception as e:
  142. return server_error_response(e)
  143. @manager.route('/rm', methods=['POST'])
  144. @login_required
  145. @validate_request("chunk_ids")
  146. def rm():
  147. req = request.json
  148. try:
  149. if not ELASTICSEARCH.deleteByQuery(Q("ids", values=req["chunk_ids"]), search.index_name(current_user.id)):
  150. return get_data_error_result(retmsg="Index updating failure")
  151. return get_json_result(data=True)
  152. except Exception as e:
  153. return server_error_response(e)
  154. @manager.route('/create', methods=['POST'])
  155. @login_required
  156. @validate_request("doc_id", "content_ltks")
  157. def create():
  158. req = request.json
  159. md5 = hashlib.md5()
  160. md5.update((req["content_ltks"] + req["doc_id"]).encode("utf-8"))
  161. chunck_id = md5.hexdigest()
  162. d = {"id": chunck_id, "content_ltks": huqie.qie(req["content_ltks"])}
  163. d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
  164. d["important_kwd"] = req.get("important_kwd", [])
  165. d["important_tks"] = huqie.qie(" ".join(req.get("important_kwd", [])))
  166. d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
  167. try:
  168. e, doc = DocumentService.get_by_id(req["doc_id"])
  169. if not e:
  170. return get_data_error_result(retmsg="Document not found!")
  171. d["kb_id"] = [doc.kb_id]
  172. d["docnm_kwd"] = doc.name
  173. d["doc_id"] = doc.id
  174. tenant_id = DocumentService.get_tenant_id(req["doc_id"])
  175. if not tenant_id:
  176. return get_data_error_result(retmsg="Tenant not found!")
  177. embd_mdl = TenantLLMService.model_instance(
  178. tenant_id, LLMType.EMBEDDING.value)
  179. v, c = embd_mdl.encode([doc.name, req["content_ltks"]])
  180. DocumentService.increment_chunk_num(req["doc_id"], doc.kb_id, c, 1, 0)
  181. v = 0.1 * v[0] + 0.9 * v[1]
  182. d["q_%d_vec" % len(v)] = v.tolist()
  183. ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
  184. return get_json_result(data={"chunk_id": chunck_id})
  185. except Exception as e:
  186. return server_error_response(e)
  187. @manager.route('/retrieval_test', methods=['POST'])
  188. @login_required
  189. @validate_request("kb_id", "question")
  190. def retrieval_test():
  191. req = request.json
  192. page = int(req.get("page", 1))
  193. size = int(req.get("size", 30))
  194. question = req["question"]
  195. kb_id = req["kb_id"]
  196. doc_ids = req.get("doc_ids", [])
  197. similarity_threshold = float(req.get("similarity_threshold", 0.2))
  198. vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
  199. top = int(req.get("top", 1024))
  200. try:
  201. e, kb = KnowledgebaseService.get_by_id(kb_id)
  202. if not e:
  203. return get_data_error_result(retmsg="Knowledgebase not found!")
  204. embd_mdl = TenantLLMService.model_instance(
  205. kb.tenant_id, LLMType.EMBEDDING.value)
  206. ranks = retrievaler.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size, similarity_threshold,
  207. vector_similarity_weight, top, doc_ids)
  208. return get_json_result(data=ranks)
  209. except Exception as e:
  210. if str(e).find("not_found") > 0:
  211. return get_json_result(data=False, retmsg=f'Index not found!',
  212. retcode=RetCode.DATA_ERROR)
  213. return server_error_response(e)