You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. from flask import request
  17. from api import settings
  18. from api.db import StatusEnum
  19. from api.db.services.dialog_service import DialogService
  20. from api.db.services.knowledgebase_service import KnowledgebaseService
  21. from api.db.services.llm_service import TenantLLMService
  22. from api.db.services.user_service import TenantService
  23. from api.utils import get_uuid
  24. from api.utils.api_utils import get_error_data_result, token_required
  25. from api.utils.api_utils import get_result
  26. @manager.route('/chats', methods=['POST']) # noqa: F821
  27. @token_required
  28. def create(tenant_id):
  29. req = request.json
  30. ids = req.get("dataset_ids")
  31. if not ids:
  32. return get_error_data_result(message="`dataset_ids` is required")
  33. for kb_id in ids:
  34. kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
  35. if not kbs:
  36. return get_error_data_result(f"You don't own the dataset {kb_id}")
  37. kbs = KnowledgebaseService.query(id=kb_id)
  38. kb = kbs[0]
  39. if kb.chunk_num == 0:
  40. return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
  41. kbs = KnowledgebaseService.get_by_ids(ids)
  42. embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
  43. embd_count = list(set(embd_ids))
  44. if len(embd_count) != 1:
  45. return get_result(message='Datasets use different embedding models."',
  46. code=settings.RetCode.AUTHENTICATION_ERROR)
  47. req["kb_ids"] = ids
  48. # llm
  49. llm = req.get("llm")
  50. if llm:
  51. if "model_name" in llm:
  52. req["llm_id"] = llm.pop("model_name")
  53. if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"):
  54. return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
  55. req["llm_setting"] = req.pop("llm")
  56. e, tenant = TenantService.get_by_id(tenant_id)
  57. if not e:
  58. return get_error_data_result(message="Tenant not found!")
  59. # prompt
  60. prompt = req.get("prompt")
  61. key_mapping = {"parameters": "variables",
  62. "prologue": "opener",
  63. "quote": "show_quote",
  64. "system": "prompt",
  65. "rerank_id": "rerank_model",
  66. "vector_similarity_weight": "keywords_similarity_weight"}
  67. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"]
  68. if prompt:
  69. for new_key, old_key in key_mapping.items():
  70. if old_key in prompt:
  71. prompt[new_key] = prompt.pop(old_key)
  72. for key in key_list:
  73. if key in prompt:
  74. req[key] = prompt.pop(key)
  75. req["prompt_config"] = req.pop("prompt")
  76. # init
  77. req["id"] = get_uuid()
  78. req["description"] = req.get("description", "A helpful Assistant")
  79. req["icon"] = req.get("avatar", "")
  80. req["top_n"] = req.get("top_n", 6)
  81. req["top_k"] = req.get("top_k", 1024)
  82. req["rerank_id"] = req.get("rerank_id", "")
  83. if req.get("rerank_id"):
  84. value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
  85. if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,
  86. llm_name=req.get("rerank_id"),
  87. model_type="rerank"):
  88. return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
  89. if not req.get("llm_id"):
  90. req["llm_id"] = tenant.llm_id
  91. if not req.get("name"):
  92. return get_error_data_result(message="`name` is required.")
  93. if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
  94. return get_error_data_result(message="Duplicated chat name in creating chat.")
  95. # tenant_id
  96. if req.get("tenant_id"):
  97. return get_error_data_result(message="`tenant_id` must not be provided.")
  98. req["tenant_id"] = tenant_id
  99. # prompt more parameter
  100. default_prompt = {
  101. "system": """You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history.
  102. Here is the knowledge base:
  103. {knowledge}
  104. The above is the knowledge base.""",
  105. "prologue": "Hi! I'm your assistant, what can I do for you?",
  106. "parameters": [
  107. {"key": "knowledge", "optional": False}
  108. ],
  109. "empty_response": "Sorry! No relevant content was found in the knowledge base!",
  110. "quote": True,
  111. "tts": False,
  112. "refine_multiturn": True
  113. }
  114. key_list_2 = ["system", "prologue", "parameters", "empty_response", "quote", "tts", "refine_multiturn"]
  115. if "prompt_config" not in req:
  116. req['prompt_config'] = {}
  117. for key in key_list_2:
  118. temp = req['prompt_config'].get(key)
  119. if (not temp and key == 'system') or (key not in req["prompt_config"]):
  120. req['prompt_config'][key] = default_prompt[key]
  121. for p in req['prompt_config']["parameters"]:
  122. if p["optional"]:
  123. continue
  124. if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
  125. return get_error_data_result(
  126. message="Parameter '{}' is not used".format(p["key"]))
  127. # save
  128. if not DialogService.save(**req):
  129. return get_error_data_result(message="Fail to new a chat!")
  130. # response
  131. e, res = DialogService.get_by_id(req["id"])
  132. if not e:
  133. return get_error_data_result(message="Fail to new a chat!")
  134. res = res.to_json()
  135. renamed_dict = {}
  136. for key, value in res["prompt_config"].items():
  137. new_key = key_mapping.get(key, key)
  138. renamed_dict[new_key] = value
  139. res["prompt"] = renamed_dict
  140. del res["prompt_config"]
  141. new_dict = {"similarity_threshold": res["similarity_threshold"],
  142. "keywords_similarity_weight": 1-res["vector_similarity_weight"],
  143. "top_n": res["top_n"],
  144. "rerank_model": res['rerank_id']}
  145. res["prompt"].update(new_dict)
  146. for key in key_list:
  147. del res[key]
  148. res["llm"] = res.pop("llm_setting")
  149. res["llm"]["model_name"] = res.pop("llm_id")
  150. del res["kb_ids"]
  151. res["dataset_ids"] = req["dataset_ids"]
  152. res["avatar"] = res.pop("icon")
  153. return get_result(data=res)
  154. @manager.route('/chats/<chat_id>', methods=['PUT']) # noqa: F821
  155. @token_required
  156. def update(tenant_id, chat_id):
  157. if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
  158. return get_error_data_result(message='You do not own the chat')
  159. req = request.json
  160. ids = req.get("dataset_ids")
  161. if "show_quotation" in req:
  162. req["do_refer"] = req.pop("show_quotation")
  163. if "dataset_ids" in req:
  164. if not ids:
  165. return get_error_data_result("`dataset_ids` can't be empty")
  166. if ids:
  167. for kb_id in ids:
  168. kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
  169. if not kbs:
  170. return get_error_data_result(f"You don't own the dataset {kb_id}")
  171. kbs = KnowledgebaseService.query(id=kb_id)
  172. kb = kbs[0]
  173. if kb.chunk_num == 0:
  174. return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
  175. kbs = KnowledgebaseService.get_by_ids(ids)
  176. embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
  177. embd_count = list(set(embd_ids))
  178. if len(embd_count) != 1:
  179. return get_result(
  180. message='Datasets use different embedding models."',
  181. code=settings.RetCode.AUTHENTICATION_ERROR)
  182. req["kb_ids"] = ids
  183. llm = req.get("llm")
  184. if llm:
  185. if "model_name" in llm:
  186. req["llm_id"] = llm.pop("model_name")
  187. if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"):
  188. return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
  189. req["llm_setting"] = req.pop("llm")
  190. e, tenant = TenantService.get_by_id(tenant_id)
  191. if not e:
  192. return get_error_data_result(message="Tenant not found!")
  193. # prompt
  194. prompt = req.get("prompt")
  195. key_mapping = {"parameters": "variables",
  196. "prologue": "opener",
  197. "quote": "show_quote",
  198. "system": "prompt",
  199. "rerank_id": "rerank_model",
  200. "vector_similarity_weight": "keywords_similarity_weight"}
  201. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"]
  202. if prompt:
  203. for new_key, old_key in key_mapping.items():
  204. if old_key in prompt:
  205. prompt[new_key] = prompt.pop(old_key)
  206. for key in key_list:
  207. if key in prompt:
  208. req[key] = prompt.pop(key)
  209. req["prompt_config"] = req.pop("prompt")
  210. e, res = DialogService.get_by_id(chat_id)
  211. res = res.to_json()
  212. if req.get("rerank_id"):
  213. value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
  214. if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,
  215. llm_name=req.get("rerank_id"),
  216. model_type="rerank"):
  217. return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
  218. if "name" in req:
  219. if not req.get("name"):
  220. return get_error_data_result(message="`name` is not empty.")
  221. if req["name"].lower() != res["name"].lower() \
  222. and len(
  223. DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
  224. return get_error_data_result(message="Duplicated chat name in updating dataset.")
  225. if "prompt_config" in req:
  226. res["prompt_config"].update(req["prompt_config"])
  227. for p in res["prompt_config"]["parameters"]:
  228. if p["optional"]:
  229. continue
  230. if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
  231. return get_error_data_result(message="Parameter '{}' is not used".format(p["key"]))
  232. if "llm_setting" in req:
  233. res["llm_setting"].update(req["llm_setting"])
  234. req["prompt_config"] = res["prompt_config"]
  235. req["llm_setting"] = res["llm_setting"]
  236. # avatar
  237. if "avatar" in req:
  238. req["icon"] = req.pop("avatar")
  239. if "dataset_ids" in req:
  240. req.pop("dataset_ids")
  241. if not DialogService.update_by_id(chat_id, req):
  242. return get_error_data_result(message="Chat not found!")
  243. return get_result()
  244. @manager.route('/chats', methods=['DELETE']) # noqa: F821
  245. @token_required
  246. def delete(tenant_id):
  247. req = request.json
  248. if not req:
  249. ids = None
  250. else:
  251. ids = req.get("ids")
  252. if not ids:
  253. id_list = []
  254. dias = DialogService.query(tenant_id=tenant_id, status=StatusEnum.VALID.value)
  255. for dia in dias:
  256. id_list.append(dia.id)
  257. else:
  258. id_list = ids
  259. for id in id_list:
  260. if not DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value):
  261. return get_error_data_result(message=f"You don't own the chat {id}")
  262. temp_dict = {"status": StatusEnum.INVALID.value}
  263. DialogService.update_by_id(id, temp_dict)
  264. return get_result()
  265. @manager.route('/chats', methods=['GET']) # noqa: F821
  266. @token_required
  267. def list_chat(tenant_id):
  268. id = request.args.get("id")
  269. name = request.args.get("name")
  270. if id or name:
  271. chat = DialogService.query(id=id, name=name, status=StatusEnum.VALID.value, tenant_id=tenant_id)
  272. if not chat:
  273. return get_error_data_result(message="The chat doesn't exist")
  274. page_number = int(request.args.get("page", 1))
  275. items_per_page = int(request.args.get("page_size", 30))
  276. orderby = request.args.get("orderby", "create_time")
  277. if request.args.get("desc") == "False" or request.args.get("desc") == "false":
  278. desc = False
  279. else:
  280. desc = True
  281. chats = DialogService.get_list(tenant_id, page_number, items_per_page, orderby, desc, id, name)
  282. if not chats:
  283. return get_result(data=[])
  284. list_assts = []
  285. key_mapping = {"parameters": "variables",
  286. "prologue": "opener",
  287. "quote": "show_quote",
  288. "system": "prompt",
  289. "rerank_id": "rerank_model",
  290. "vector_similarity_weight": "keywords_similarity_weight",
  291. "do_refer": "show_quotation"}
  292. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
  293. for res in chats:
  294. renamed_dict = {}
  295. for key, value in res["prompt_config"].items():
  296. new_key = key_mapping.get(key, key)
  297. renamed_dict[new_key] = value
  298. res["prompt"] = renamed_dict
  299. del res["prompt_config"]
  300. new_dict = {"similarity_threshold": res["similarity_threshold"],
  301. "keywords_similarity_weight": 1-res["vector_similarity_weight"],
  302. "top_n": res["top_n"],
  303. "rerank_model": res['rerank_id']}
  304. res["prompt"].update(new_dict)
  305. for key in key_list:
  306. del res[key]
  307. res["llm"] = res.pop("llm_setting")
  308. res["llm"]["model_name"] = res.pop("llm_id")
  309. kb_list = []
  310. for kb_id in res["kb_ids"]:
  311. kb = KnowledgebaseService.query(id=kb_id)
  312. if not kb:
  313. return get_error_data_result(message=f"Don't exist the kb {kb_id}")
  314. kb_list.append(kb[0].to_json())
  315. del res["kb_ids"]
  316. res["datasets"] = kb_list
  317. res["avatar"] = res.pop("icon")
  318. list_assts.append(res)
  319. return get_result(data=list_assts)