| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- # -*- coding: utf-8 -*-
- import re
- from elasticsearch_dsl import Q, Search, A
- from typing import List, Optional, Tuple, Dict, Union
- from dataclasses import dataclass
- from rag.utils import rmSpace
- from rag.nlp import huqie, query
- import numpy as np
-
-
- def index_name(uid): return f"ragflow_{uid}"
-
-
- class Dealer:
- def __init__(self, es, emb_mdl):
- self.qryr = query.EsQueryer(es)
- self.qryr.flds = [
- "title_tks^10",
- "title_sm_tks^5",
- "content_ltks^2",
- "content_sm_ltks"]
- self.es = es
- self.emb_mdl = emb_mdl
-
- @dataclass
- class SearchResult:
- total: int
- ids: List[str]
- query_vector: List[float] = None
- field: Optional[Dict] = None
- highlight: Optional[Dict] = None
- aggregation: Union[List, Dict, None] = None
- keywords: Optional[List[str]] = None
- group_docs: List[List] = None
-
- def _vector(self, txt, sim=0.8, topk=10):
- return {
- "field": "q_vec",
- "k": topk,
- "similarity": sim,
- "num_candidates": 1000,
- "query_vector": self.emb_mdl.encode_queries(txt)
- }
-
- def search(self, req, idxnm, tks_num=3):
- keywords = []
- qst = req.get("question", "")
-
- bqry, keywords = self.qryr.question(qst)
- if req.get("kb_ids"):
- bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
- bqry.filter.append(Q("exists", field="q_tks"))
- bqry.boost = 0.05
- print(bqry)
-
- s = Search()
- pg = int(req.get("page", 1)) - 1
- ps = int(req.get("size", 1000))
- src = req.get("field", ["docnm_kwd", "content_ltks", "kb_id",
- "image_id", "doc_id", "q_vec"])
-
- s = s.query(bqry)[pg * ps:(pg + 1) * ps]
- s = s.highlight("content_ltks")
- s = s.highlight("title_ltks")
- if not qst:
- s = s.sort(
- {"create_time": {"order": "desc", "unmapped_type": "date"}})
-
- s = s.highlight_options(
- fragment_size=120,
- number_of_fragments=5,
- boundary_scanner_locale="zh-CN",
- boundary_scanner="SENTENCE",
- boundary_chars=",./;:\\!(),。?:!……()——、"
- )
- s = s.to_dict()
- q_vec = []
- if req.get("vector"):
- s["knn"] = self._vector(qst, req.get("similarity", 0.4), ps)
- s["knn"]["filter"] = bqry.to_dict()
- del s["highlight"]
- q_vec = s["knn"]["query_vector"]
- res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
- print("TOTAL: ", self.es.getTotal(res))
- if self.es.getTotal(res) == 0 and "knn" in s:
- bqry, _ = self.qryr.question(qst, min_match="10%")
- if req.get("kb_ids"):
- bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
- s["query"] = bqry.to_dict()
- s["knn"]["filter"] = bqry.to_dict()
- s["knn"]["similarity"] = 0.7
- res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
-
- kwds = set([])
- for k in keywords:
- kwds.add(k)
- for kk in huqie.qieqie(k).split(" "):
- if len(kk) < 2:
- continue
- if kk in kwds:
- continue
- kwds.add(kk)
-
- aggs = self.getAggregation(res, "docnm_kwd")
-
- return self.SearchResult(
- total=self.es.getTotal(res),
- ids=self.es.getDocIds(res),
- query_vector=q_vec,
- aggregation=aggs,
- highlight=self.getHighlight(res),
- field=self.getFields(res, ["docnm_kwd", "content_ltks",
- "kb_id", "image_id", "doc_id", "q_vec"]),
- keywords=list(kwds)
- )
-
- def getAggregation(self, res, g):
- if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
- return
- bkts = res["aggregations"]["aggs_" + g]["buckets"]
- return [(b["key"], b["doc_count"]) for b in bkts]
-
- def getHighlight(self, res):
- def rmspace(line):
- eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
- r = []
- for t in line.split(" "):
- if not t:
- continue
- if len(r) > 0 and len(
- t) > 0 and r[-1][-1] in eng and t[0] in eng:
- r.append(" ")
- r.append(t)
- r = "".join(r)
- return r
-
- ans = {}
- for d in res["hits"]["hits"]:
- hlts = d.get("highlight")
- if not hlts:
- continue
- ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
- return ans
-
- def getFields(self, sres, flds):
- res = {}
- if not flds:
- return {}
- for d in self.es.getSource(sres):
- m = {n: d.get(n) for n in flds if d.get(n) is not None}
- for n, v in m.items():
- if isinstance(v, type([])):
- m[n] = "\t".join([str(vv) for vv in v])
- continue
- if not isinstance(v, type("")):
- m[n] = str(m[n])
- m[n] = rmSpace(m[n])
-
- if m:
- res[d["id"]] = m
- return res
-
- @staticmethod
- def trans2floats(txt):
- return [float(t) for t in txt.split("\t")]
-
- def insert_citations(self, ans, top_idx, sres,
- vfield="q_vec", cfield="content_ltks"):
-
- ins_embd = [Dealer.trans2floats(
- sres.field[sres.ids[i]][vfield]) for i in top_idx]
- ins_tw = [sres.field[sres.ids[i]][cfield].split(" ") for i in top_idx]
- s = 0
- e = 0
- res = ""
-
- def citeit():
- nonlocal s, e, ans, res
- if not ins_embd:
- return
- embd = self.emb_mdl.encode(ans[s: e])
- sim = self.qryr.hybrid_similarity(embd,
- ins_embd,
- huqie.qie(ans[s:e]).split(" "),
- ins_tw)
- print(ans[s: e], sim)
- mx = np.max(sim) * 0.99
- if mx < 0.55:
- return
- cita = list(set([top_idx[i]
- for i in range(len(ins_embd)) if sim[i] > mx]))[:4]
- for i in cita:
- res += f"@?{i}?@"
-
- return cita
-
- punct = set(";。?!!")
- if not self.qryr.isChinese(ans):
- punct.add("?")
- punct.add(".")
- while e < len(ans):
- if e - s < 12 or ans[e] not in punct:
- e += 1
- continue
- if ans[e] == "." and e + \
- 1 < len(ans) and re.match(r"[0-9]", ans[e + 1]):
- e += 1
- continue
- if ans[e] == "." and e - 2 >= 0 and ans[e - 2] == "\n":
- e += 1
- continue
- res += ans[s: e]
- citeit()
- res += ans[e]
- e += 1
- s = e
-
- if s < len(ans):
- res += ans[s:]
- citeit()
-
- return res
-
- def rerank(self, sres, query, tkweight=0.3, vtweight=0.7,
- vfield="q_vec", cfield="content_ltks"):
- ins_embd = [
- Dealer.trans2floats(
- sres.field[i]["q_vec"]) for i in sres.ids]
- if not ins_embd:
- return []
- ins_tw = [sres.field[i][cfield].split(" ") for i in sres.ids]
- # return CosineSimilarity([sres.query_vector], ins_embd)[0]
- sim = self.qryr.hybrid_similarity(sres.query_vector,
- ins_embd,
- huqie.qie(query).split(" "),
- ins_tw, tkweight, vtweight)
- return sim
-
-
- if __name__ == "__main__":
- from util import es_conn
- SE = Dealer(es_conn.HuEs("infiniflow"))
- qs = [
- "胡凯",
- ""
- ]
- for q in qs:
- print(">>>>>>>>>>>>>>>>>>>>", q)
- print(SE.search(
- {"question": q, "kb_ids": "64f072a75f3b97c865718c4a"}, "infiniflow_*"))
|