| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 | 
							- #
 - #  Copyright 2019 The FATE Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - from abc import ABC
 - 
 - import dashscope
 - from openai import OpenAI
 - from FlagEmbedding import FlagModel
 - import torch
 - import os
 - import numpy as np
 - 
 - from rag.utils import num_tokens_from_string
 - 
 - 
 - class Base(ABC):
 -     def __init__(self, key, model_name):
 -         pass
 - 
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         raise NotImplementedError("Please implement encode method!")
 - 
 - 
 - class HuEmbedding(Base):
 -     def __init__(self, key="", model_name=""):
 -         """
 -         If you have trouble downloading HuggingFace models, -_^ this might help!!
 - 
 -         For Linux:
 -         export HF_ENDPOINT=https://hf-mirror.com
 - 
 -         For Windows:
 -         Good luck
 -         ^_-
 - 
 -         """
 -         self.model = FlagModel("BAAI/bge-large-zh-v1.5",
 -                                query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
 -                                use_fp16=torch.cuda.is_available())
 - 
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         token_count = 0
 -         for t in texts: token_count += num_tokens_from_string(t)
 -         res = []
 -         for i in range(0, len(texts), batch_size):
 -             res.extend(self.model.encode(texts[i:i + batch_size]).tolist())
 -         return np.array(res), token_count
 - 
 - 
 - class OpenAIEmbed(Base):
 -     def __init__(self, key, model_name="text-embedding-ada-002"):
 -         self.client = OpenAI(key)
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=32):
 -         token_count = 0
 -         for t in texts: token_count += num_tokens_from_string(t)
 -         res = self.client.embeddings.create(input=texts,
 -                                             model=self.model_name)
 -         return [d["embedding"] for d in res["data"]], token_count
 - 
 - 
 - class QWenEmbed(Base):
 -     def __init__(self, key, model_name="text_embedding_v2"):
 -         dashscope.api_key = key
 -         self.model_name = model_name
 - 
 -     def encode(self, texts: list, batch_size=32, text_type="document"):
 -         import dashscope
 -         res = []
 -         token_count = 0
 -         for txt in texts:
 -             resp = dashscope.TextEmbedding.call(
 -                 model=self.model_name,
 -                 input=txt[:2048],
 -                 text_type=text_type
 -             )
 -             res.append(resp["output"]["embeddings"][0]["embedding"])
 -             token_count += resp["usage"]["total_tokens"]
 -         return res, token_count
 
 
  |