| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- from abc import ABC
-
- import dashscope
- from openai import OpenAI
- from FlagEmbedding import FlagModel
- import torch
- import os
- import numpy as np
-
- from rag.utils import num_tokens_from_string
-
-
- class Base(ABC):
- def __init__(self, key, model_name):
- pass
-
-
- def encode(self, texts: list, batch_size=32):
- raise NotImplementedError("Please implement encode method!")
-
-
- class HuEmbedding(Base):
- def __init__(self, key="", model_name=""):
- """
- If you have trouble downloading HuggingFace models, -_^ this might help!!
-
- For Linux:
- export HF_ENDPOINT=https://hf-mirror.com
-
- For Windows:
- Good luck
- ^_-
-
- """
- self.model = FlagModel("BAAI/bge-large-zh-v1.5",
- query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
- use_fp16=torch.cuda.is_available())
-
-
- def encode(self, texts: list, batch_size=32):
- token_count = 0
- for t in texts: token_count += num_tokens_from_string(t)
- res = []
- for i in range(0, len(texts), batch_size):
- res.extend(self.model.encode(texts[i:i + batch_size]).tolist())
- return np.array(res), token_count
-
-
- class OpenAIEmbed(Base):
- def __init__(self, key, model_name="text-embedding-ada-002"):
- self.client = OpenAI(key)
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32):
- token_count = 0
- for t in texts: token_count += num_tokens_from_string(t)
- res = self.client.embeddings.create(input=texts,
- model=self.model_name)
- return [d["embedding"] for d in res["data"]], token_count
-
-
- class QWenEmbed(Base):
- def __init__(self, key, model_name="text_embedding_v2"):
- dashscope.api_key = key
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32, text_type="document"):
- import dashscope
- res = []
- token_count = 0
- for txt in texts:
- resp = dashscope.TextEmbedding.call(
- model=self.model_name,
- input=txt[:2048],
- text_type=text_type
- )
- res.append(resp["output"]["embeddings"][0]["embedding"])
- token_count += resp["usage"]["total_tokens"]
- return res, token_count
|