| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
-
- import os
- import re
-
- import tiktoken
-
- from api.utils.file_utils import get_project_base_directory
-
-
- def singleton(cls, *args, **kw):
- instances = {}
-
- def _singleton():
- key = str(cls) + str(os.getpid())
- if key not in instances:
- instances[key] = cls(*args, **kw)
- return instances[key]
-
- return _singleton
-
-
- def rmSpace(txt):
- txt = re.sub(r"([^a-z0-9.,\)>]) +([^ ])", r"\1\2", txt, flags=re.IGNORECASE)
- return re.sub(r"([^ ]) +([^a-z0-9.,\(<])", r"\1\2", txt, flags=re.IGNORECASE)
-
-
- def findMaxDt(fnm):
- m = "1970-01-01 00:00:00"
- try:
- with open(fnm, "r") as f:
- while True:
- line = f.readline()
- if not line:
- break
- line = line.strip("\n")
- if line == 'nan':
- continue
- if line > m:
- m = line
- except Exception:
- pass
- return m
-
-
- def findMaxTm(fnm):
- m = 0
- try:
- with open(fnm, "r") as f:
- while True:
- line = f.readline()
- if not line:
- break
- line = line.strip("\n")
- if line == 'nan':
- continue
- if int(line) > m:
- m = int(line)
- except Exception:
- pass
- return m
-
-
- tiktoken_cache_dir = get_project_base_directory()
- os.environ["TIKTOKEN_CACHE_DIR"] = tiktoken_cache_dir
- # encoder = tiktoken.encoding_for_model("gpt-3.5-turbo")
- encoder = tiktoken.get_encoding("cl100k_base")
-
-
- def num_tokens_from_string(string: str) -> int:
- """Returns the number of tokens in a text string."""
- try:
- return len(encoder.encode(string))
- except Exception:
- return 0
-
-
- def truncate(string: str, max_len: int) -> str:
- """Returns truncated text if the length of text exceed max_len."""
- return encoder.decode(encoder.encode(string)[:max_len])
-
-
- def clean_markdown_block(text):
- text = re.sub(r'^\s*```markdown\s*\n?', '', text)
- text = re.sub(r'\n?\s*```\s*$', '', text)
- return text.strip()
-
-
- def get_float(v):
- if v is None:
- return float('-inf')
- try:
- return float(v)
- except Exception:
- return float('-inf')
|