Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

dialog_service.py 26KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import binascii
  17. from datetime import datetime
  18. import logging
  19. import re
  20. import time
  21. from copy import deepcopy
  22. from functools import partial
  23. from timeit import default_timer as timer
  24. from langfuse import Langfuse
  25. from agentic_reasoning import DeepResearcher
  26. from api import settings
  27. from api.db import LLMType, ParserType, StatusEnum
  28. from api.db.db_models import DB, Dialog
  29. from api.db.services.common_service import CommonService
  30. from api.db.services.knowledgebase_service import KnowledgebaseService
  31. from api.db.services.langfuse_service import TenantLangfuseService
  32. from api.db.services.llm_service import LLMBundle, TenantLLMService
  33. from api.utils import current_timestamp, datetime_format
  34. from rag.app.resume import forbidden_select_fields4resume
  35. from rag.app.tag import label_question
  36. from rag.nlp.search import index_name
  37. from rag.prompts import chunks_format, citation_prompt, full_question, kb_prompt, keyword_extraction, llm_id2llm_type, message_fit_in
  38. from rag.utils import num_tokens_from_string, rmSpace
  39. from rag.utils.tavily_conn import Tavily
  40. class DialogService(CommonService):
  41. model = Dialog
  42. @classmethod
  43. def save(cls, **kwargs):
  44. """Save a new record to database.
  45. This method creates a new record in the database with the provided field values,
  46. forcing an insert operation rather than an update.
  47. Args:
  48. **kwargs: Record field values as keyword arguments.
  49. Returns:
  50. Model instance: The created record object.
  51. """
  52. sample_obj = cls.model(**kwargs).save(force_insert=True)
  53. return sample_obj
  54. @classmethod
  55. def update_many_by_id(cls, data_list):
  56. """Update multiple records by their IDs.
  57. This method updates multiple records in the database, identified by their IDs.
  58. It automatically updates the update_time and update_date fields for each record.
  59. Args:
  60. data_list (list): List of dictionaries containing record data to update.
  61. Each dictionary must include an 'id' field.
  62. """
  63. with DB.atomic():
  64. for data in data_list:
  65. data["update_time"] = current_timestamp()
  66. data["update_date"] = datetime_format(datetime.now())
  67. cls.model.update(data).where(cls.model.id == data["id"]).execute()
  68. @classmethod
  69. @DB.connection_context()
  70. def get_list(cls, tenant_id, page_number, items_per_page, orderby, desc, id, name):
  71. chats = cls.model.select()
  72. if id:
  73. chats = chats.where(cls.model.id == id)
  74. if name:
  75. chats = chats.where(cls.model.name == name)
  76. chats = chats.where((cls.model.tenant_id == tenant_id) & (cls.model.status == StatusEnum.VALID.value))
  77. if desc:
  78. chats = chats.order_by(cls.model.getter_by(orderby).desc())
  79. else:
  80. chats = chats.order_by(cls.model.getter_by(orderby).asc())
  81. chats = chats.paginate(page_number, items_per_page)
  82. return list(chats.dicts())
  83. def chat_solo(dialog, messages, stream=True):
  84. if llm_id2llm_type(dialog.llm_id) == "image2text":
  85. chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
  86. else:
  87. chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
  88. prompt_config = dialog.prompt_config
  89. tts_mdl = None
  90. if prompt_config.get("tts"):
  91. tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
  92. msg = [{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])} for m in messages if m["role"] != "system"]
  93. if stream:
  94. last_ans = ""
  95. for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting):
  96. answer = ans
  97. delta_ans = ans[len(last_ans) :]
  98. if num_tokens_from_string(delta_ans) < 16:
  99. continue
  100. last_ans = answer
  101. yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
  102. if delta_ans:
  103. yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
  104. else:
  105. answer = chat_mdl.chat(prompt_config.get("system", ""), msg, dialog.llm_setting)
  106. user_content = msg[-1].get("content", "[content not available]")
  107. logging.debug("User: {}|Assistant: {}".format(user_content, answer))
  108. yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, answer), "prompt": "", "created_at": time.time()}
  109. def chat(dialog, messages, stream=True, **kwargs):
  110. assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
  111. if not dialog.kb_ids:
  112. for ans in chat_solo(dialog, messages, stream):
  113. yield ans
  114. return
  115. chat_start_ts = timer()
  116. if llm_id2llm_type(dialog.llm_id) == "image2text":
  117. llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
  118. else:
  119. llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
  120. max_tokens = llm_model_config.get("max_tokens", 8192)
  121. check_llm_ts = timer()
  122. langfuse_tracer = None
  123. langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=dialog.tenant_id)
  124. if langfuse_keys:
  125. langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
  126. if langfuse.auth_check():
  127. langfuse_tracer = langfuse
  128. langfuse.trace = langfuse_tracer.trace(name=f"{dialog.name}-{llm_model_config['llm_name']}")
  129. check_langfuse_tracer_ts = timer()
  130. kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
  131. embedding_list = list(set([kb.embd_id for kb in kbs]))
  132. if len(embedding_list) != 1:
  133. yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
  134. return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
  135. embedding_model_name = embedding_list[0]
  136. retriever = settings.retrievaler
  137. questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
  138. attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
  139. if "doc_ids" in messages[-1]:
  140. attachments = messages[-1]["doc_ids"]
  141. create_retriever_ts = timer()
  142. embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embedding_model_name)
  143. if not embd_mdl:
  144. raise LookupError("Embedding model(%s) not found" % embedding_model_name)
  145. bind_embedding_ts = timer()
  146. if llm_id2llm_type(dialog.llm_id) == "image2text":
  147. chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
  148. else:
  149. chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
  150. toolcall_session, tools = kwargs.get("toolcall_session"), kwargs.get("tools")
  151. if toolcall_session and tools:
  152. chat_mdl.bind_tools(toolcall_session, tools)
  153. bind_llm_ts = timer()
  154. prompt_config = dialog.prompt_config
  155. field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
  156. tts_mdl = None
  157. if prompt_config.get("tts"):
  158. tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
  159. # try to use sql if field mapping is good to go
  160. if field_map:
  161. logging.debug("Use SQL to retrieval:{}".format(questions[-1]))
  162. ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
  163. if ans:
  164. yield ans
  165. return
  166. for p in prompt_config["parameters"]:
  167. if p["key"] == "knowledge":
  168. continue
  169. if p["key"] not in kwargs and not p["optional"]:
  170. raise KeyError("Miss parameter: " + p["key"])
  171. if p["key"] not in kwargs:
  172. prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ")
  173. if len(questions) > 1 and prompt_config.get("refine_multiturn"):
  174. questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)]
  175. else:
  176. questions = questions[-1:]
  177. refine_question_ts = timer()
  178. rerank_mdl = None
  179. if dialog.rerank_id:
  180. rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)
  181. bind_reranker_ts = timer()
  182. generate_keyword_ts = bind_reranker_ts
  183. thought = ""
  184. kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
  185. if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
  186. knowledges = []
  187. else:
  188. if prompt_config.get("keyword", False):
  189. questions[-1] += keyword_extraction(chat_mdl, questions[-1])
  190. generate_keyword_ts = timer()
  191. tenant_ids = list(set([kb.tenant_id for kb in kbs]))
  192. knowledges = []
  193. if prompt_config.get("reasoning", False):
  194. reasoner = DeepResearcher(
  195. chat_mdl,
  196. prompt_config,
  197. partial(retriever.retrieval, embd_mdl=embd_mdl, tenant_ids=tenant_ids, kb_ids=dialog.kb_ids, page=1, page_size=dialog.top_n, similarity_threshold=0.2, vector_similarity_weight=0.3),
  198. )
  199. for think in reasoner.thinking(kbinfos, " ".join(questions)):
  200. if isinstance(think, str):
  201. thought = think
  202. knowledges = [t for t in think.split("\n") if t]
  203. elif stream:
  204. yield think
  205. else:
  206. kbinfos = retriever.retrieval(
  207. " ".join(questions),
  208. embd_mdl,
  209. tenant_ids,
  210. dialog.kb_ids,
  211. 1,
  212. dialog.top_n,
  213. dialog.similarity_threshold,
  214. dialog.vector_similarity_weight,
  215. doc_ids=attachments,
  216. top=dialog.top_k,
  217. aggs=False,
  218. rerank_mdl=rerank_mdl,
  219. rank_feature=label_question(" ".join(questions), kbs),
  220. )
  221. if prompt_config.get("tavily_api_key"):
  222. tav = Tavily(prompt_config["tavily_api_key"])
  223. tav_res = tav.retrieve_chunks(" ".join(questions))
  224. kbinfos["chunks"].extend(tav_res["chunks"])
  225. kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
  226. if prompt_config.get("use_kg"):
  227. ck = settings.kg_retrievaler.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl, LLMBundle(dialog.tenant_id, LLMType.CHAT))
  228. if ck["content_with_weight"]:
  229. kbinfos["chunks"].insert(0, ck)
  230. knowledges = kb_prompt(kbinfos, max_tokens)
  231. logging.debug("{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
  232. retrieval_ts = timer()
  233. if not knowledges and prompt_config.get("empty_response"):
  234. empty_res = prompt_config["empty_response"]
  235. yield {"answer": empty_res, "reference": kbinfos, "prompt": "\n\n### Query:\n%s" % " ".join(questions), "audio_binary": tts(tts_mdl, empty_res)}
  236. return {"answer": prompt_config["empty_response"], "reference": kbinfos}
  237. kwargs["knowledge"] = "\n------\n" + "\n\n------\n\n".join(knowledges)
  238. gen_conf = dialog.llm_setting
  239. msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
  240. prompt4citation = ""
  241. if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
  242. prompt4citation = citation_prompt()
  243. msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])} for m in messages if m["role"] != "system"])
  244. used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.95))
  245. assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
  246. prompt = msg[0]["content"]
  247. if "max_tokens" in gen_conf:
  248. gen_conf["max_tokens"] = min(gen_conf["max_tokens"], max_tokens - used_token_count)
  249. def decorate_answer(answer):
  250. nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts, questions, langfuse_tracer
  251. refs = []
  252. ans = answer.split("</think>")
  253. think = ""
  254. if len(ans) == 2:
  255. think = ans[0] + "</think>"
  256. answer = ans[1]
  257. if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
  258. answer = re.sub(r"##[ij]\$\$", "", answer, flags=re.DOTALL)
  259. idx = set([])
  260. if not re.search(r"##[0-9]+\$\$", answer):
  261. answer, idx = retriever.insert_citations(
  262. answer,
  263. [ck["content_ltks"] for ck in kbinfos["chunks"]],
  264. [ck["vector"] for ck in kbinfos["chunks"]],
  265. embd_mdl,
  266. tkweight=1 - dialog.vector_similarity_weight,
  267. vtweight=dialog.vector_similarity_weight,
  268. )
  269. else:
  270. for match in re.finditer(r"##([0-9]+)\$\$", answer):
  271. i = int(match.group(1))
  272. if i < len(kbinfos["chunks"]):
  273. idx.add(i)
  274. # handle (ID: 1), ID: 2 etc.
  275. for match in re.finditer(r"\(\s*ID:\s*(\d+)\s*\)|ID[: ]+\s*(\d+)", answer):
  276. full_match = match.group(0)
  277. id = match.group(1) or match.group(2)
  278. if id:
  279. i = int(id)
  280. if i < len(kbinfos["chunks"]):
  281. idx.add(i)
  282. answer = answer.replace(full_match, f"##{i}$$")
  283. idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
  284. recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
  285. if not recall_docs:
  286. recall_docs = kbinfos["doc_aggs"]
  287. kbinfos["doc_aggs"] = recall_docs
  288. refs = deepcopy(kbinfos)
  289. for c in refs["chunks"]:
  290. if c.get("vector"):
  291. del c["vector"]
  292. if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
  293. answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
  294. finish_chat_ts = timer()
  295. total_time_cost = (finish_chat_ts - chat_start_ts) * 1000
  296. check_llm_time_cost = (check_llm_ts - chat_start_ts) * 1000
  297. check_langfuse_tracer_cost = (check_langfuse_tracer_ts - check_llm_ts) * 1000
  298. create_retriever_time_cost = (create_retriever_ts - check_langfuse_tracer_ts) * 1000
  299. bind_embedding_time_cost = (bind_embedding_ts - create_retriever_ts) * 1000
  300. bind_llm_time_cost = (bind_llm_ts - bind_embedding_ts) * 1000
  301. refine_question_time_cost = (refine_question_ts - bind_llm_ts) * 1000
  302. bind_reranker_time_cost = (bind_reranker_ts - refine_question_ts) * 1000
  303. generate_keyword_time_cost = (generate_keyword_ts - bind_reranker_ts) * 1000
  304. retrieval_time_cost = (retrieval_ts - generate_keyword_ts) * 1000
  305. generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000
  306. tk_num = num_tokens_from_string(think + answer)
  307. prompt += "\n\n### Query:\n%s" % " ".join(questions)
  308. prompt = (
  309. f"{prompt}\n\n"
  310. "## Time elapsed:\n"
  311. f" - Total: {total_time_cost:.1f}ms\n"
  312. f" - Check LLM: {check_llm_time_cost:.1f}ms\n"
  313. f" - Check Langfuse tracer: {check_langfuse_tracer_cost:.1f}ms\n"
  314. f" - Create retriever: {create_retriever_time_cost:.1f}ms\n"
  315. f" - Bind embedding: {bind_embedding_time_cost:.1f}ms\n"
  316. f" - Bind LLM: {bind_llm_time_cost:.1f}ms\n"
  317. f" - Multi-turn optimization: {refine_question_time_cost:.1f}ms\n"
  318. f" - Bind reranker: {bind_reranker_time_cost:.1f}ms\n"
  319. f" - Generate keyword: {generate_keyword_time_cost:.1f}ms\n"
  320. f" - Retrieval: {retrieval_time_cost:.1f}ms\n"
  321. f" - Generate answer: {generate_result_time_cost:.1f}ms\n\n"
  322. "## Token usage:\n"
  323. f" - Generated tokens(approximately): {tk_num}\n"
  324. f" - Token speed: {int(tk_num / (generate_result_time_cost / 1000.0))}/s"
  325. )
  326. langfuse_output = "\n" + re.sub(r"^.*?(### Query:.*)", r"\1", prompt, flags=re.DOTALL)
  327. langfuse_output = {"time_elapsed:": re.sub(r"\n", " \n", langfuse_output), "created_at": time.time()}
  328. # Add a condition check to call the end method only if langfuse_tracer exists
  329. if langfuse_tracer and "langfuse_generation" in locals():
  330. langfuse_generation.end(output=langfuse_output)
  331. return {"answer": think + answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt), "created_at": time.time()}
  332. if langfuse_tracer:
  333. langfuse_generation = langfuse_tracer.trace.generation(name="chat", model=llm_model_config["llm_name"], input={"prompt": prompt, "prompt4citation": prompt4citation, "messages": msg})
  334. if stream:
  335. last_ans = ""
  336. answer = ""
  337. for ans in chat_mdl.chat_streamly(prompt + prompt4citation, msg[1:], gen_conf):
  338. if thought:
  339. ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
  340. answer = ans
  341. delta_ans = ans[len(last_ans) :]
  342. if num_tokens_from_string(delta_ans) < 16:
  343. continue
  344. last_ans = answer
  345. yield {"answer": thought + answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
  346. delta_ans = answer[len(last_ans) :]
  347. if delta_ans:
  348. yield {"answer": thought + answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
  349. yield decorate_answer(thought + answer)
  350. else:
  351. answer = chat_mdl.chat(prompt + prompt4citation, msg[1:], gen_conf)
  352. user_content = msg[-1].get("content", "[content not available]")
  353. logging.debug("User: {}|Assistant: {}".format(user_content, answer))
  354. res = decorate_answer(answer)
  355. res["audio_binary"] = tts(tts_mdl, answer)
  356. yield res
  357. def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
  358. sys_prompt = "You are a Database Administrator. You need to check the fields of the following tables based on the user's list of questions and write the SQL corresponding to the last question."
  359. user_prompt = """
  360. Table name: {};
  361. Table of database fields are as follows:
  362. {}
  363. Question are as follows:
  364. {}
  365. Please write the SQL, only SQL, without any other explanations or text.
  366. """.format(index_name(tenant_id), "\n".join([f"{k}: {v}" for k, v in field_map.items()]), question)
  367. tried_times = 0
  368. def get_table():
  369. nonlocal sys_prompt, user_prompt, question, tried_times
  370. sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {"temperature": 0.06})
  371. sql = re.sub(r"^.*</think>", "", sql, flags=re.DOTALL)
  372. logging.debug(f"{question} ==> {user_prompt} get SQL: {sql}")
  373. sql = re.sub(r"[\r\n]+", " ", sql.lower())
  374. sql = re.sub(r".*select ", "select ", sql.lower())
  375. sql = re.sub(r" +", " ", sql)
  376. sql = re.sub(r"([;;]|```).*", "", sql)
  377. if sql[: len("select ")] != "select ":
  378. return None, None
  379. if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
  380. if sql[: len("select *")] != "select *":
  381. sql = "select doc_id,docnm_kwd," + sql[6:]
  382. else:
  383. flds = []
  384. for k in field_map.keys():
  385. if k in forbidden_select_fields4resume:
  386. continue
  387. if len(flds) > 11:
  388. break
  389. flds.append(k)
  390. sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
  391. logging.debug(f"{question} get SQL(refined): {sql}")
  392. tried_times += 1
  393. return settings.retrievaler.sql_retrieval(sql, format="json"), sql
  394. tbl, sql = get_table()
  395. if tbl is None:
  396. return None
  397. if tbl.get("error") and tried_times <= 2:
  398. user_prompt = """
  399. Table name: {};
  400. Table of database fields are as follows:
  401. {}
  402. Question are as follows:
  403. {}
  404. Please write the SQL, only SQL, without any other explanations or text.
  405. The SQL error you provided last time is as follows:
  406. {}
  407. Error issued by database as follows:
  408. {}
  409. Please correct the error and write SQL again, only SQL, without any other explanations or text.
  410. """.format(index_name(tenant_id), "\n".join([f"{k}: {v}" for k, v in field_map.items()]), question, sql, tbl["error"])
  411. tbl, sql = get_table()
  412. logging.debug("TRY it again: {}".format(sql))
  413. logging.debug("GET table: {}".format(tbl))
  414. if tbl.get("error") or len(tbl["rows"]) == 0:
  415. return None
  416. docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"])
  417. doc_name_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"])
  418. column_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx | doc_name_idx)]
  419. # compose Markdown table
  420. columns = (
  421. "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
  422. )
  423. line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + ("|------|" if docid_idx and docid_idx else "")
  424. rows = ["|" + "|".join([rmSpace(str(r[i])) for i in column_idx]).replace("None", " ") + "|" for r in tbl["rows"]]
  425. rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
  426. if quota:
  427. rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
  428. else:
  429. rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
  430. rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
  431. if not docid_idx or not doc_name_idx:
  432. logging.warning("SQL missing field: " + sql)
  433. return {"answer": "\n".join([columns, line, rows]), "reference": {"chunks": [], "doc_aggs": []}, "prompt": sys_prompt}
  434. docid_idx = list(docid_idx)[0]
  435. doc_name_idx = list(doc_name_idx)[0]
  436. doc_aggs = {}
  437. for r in tbl["rows"]:
  438. if r[docid_idx] not in doc_aggs:
  439. doc_aggs[r[docid_idx]] = {"doc_name": r[doc_name_idx], "count": 0}
  440. doc_aggs[r[docid_idx]]["count"] += 1
  441. return {
  442. "answer": "\n".join([columns, line, rows]),
  443. "reference": {
  444. "chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[doc_name_idx]} for r in tbl["rows"]],
  445. "doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in doc_aggs.items()],
  446. },
  447. "prompt": sys_prompt,
  448. }
  449. def tts(tts_mdl, text):
  450. if not tts_mdl or not text:
  451. return
  452. bin = b""
  453. for chunk in tts_mdl.tts(text):
  454. bin += chunk
  455. return binascii.hexlify(bin).decode("utf-8")
  456. def ask(question, kb_ids, tenant_id):
  457. kbs = KnowledgebaseService.get_by_ids(kb_ids)
  458. embedding_list = list(set([kb.embd_id for kb in kbs]))
  459. is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
  460. retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
  461. embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
  462. chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
  463. max_tokens = chat_mdl.max_length
  464. tenant_ids = list(set([kb.tenant_id for kb in kbs]))
  465. kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False, rank_feature=label_question(question, kbs))
  466. knowledges = kb_prompt(kbinfos, max_tokens)
  467. prompt = """
  468. Role: You're a smart assistant. Your name is Miss R.
  469. Task: Summarize the information from knowledge bases and answer user's question.
  470. Requirements and restriction:
  471. - DO NOT make things up, especially for numbers.
  472. - If the information from knowledge is irrelevant with user's question, JUST SAY: Sorry, no relevant information provided.
  473. - Answer with markdown format text.
  474. - Answer in language of user's question.
  475. - DO NOT make things up, especially for numbers.
  476. ### Information from knowledge bases
  477. %s
  478. The above is information from knowledge bases.
  479. """ % "\n".join(knowledges)
  480. msg = [{"role": "user", "content": question}]
  481. def decorate_answer(answer):
  482. nonlocal knowledges, kbinfos, prompt
  483. answer, idx = retriever.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=0.7, vtweight=0.3)
  484. idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
  485. recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
  486. if not recall_docs:
  487. recall_docs = kbinfos["doc_aggs"]
  488. kbinfos["doc_aggs"] = recall_docs
  489. refs = deepcopy(kbinfos)
  490. for c in refs["chunks"]:
  491. if c.get("vector"):
  492. del c["vector"]
  493. if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
  494. answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
  495. refs["chunks"] = chunks_format(refs)
  496. return {"answer": answer, "reference": refs}
  497. answer = ""
  498. for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}):
  499. answer = ans
  500. yield {"answer": answer, "reference": {}}
  501. yield decorate_answer(answer)