選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

query.py 6.3KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. # -*- coding: utf-8 -*-
  2. import json
  3. import math
  4. import re
  5. import logging
  6. import copy
  7. from elasticsearch_dsl import Q
  8. from rag.nlp import rag_tokenizer, term_weight, synonym
  9. class EsQueryer:
  10. def __init__(self, es):
  11. self.tw = term_weight.Dealer()
  12. self.es = es
  13. self.syn = synonym.Dealer()
  14. self.flds = ["ask_tks^10", "ask_small_tks"]
  15. @staticmethod
  16. def subSpecialChar(line):
  17. return re.sub(r"([:\{\}/\[\]\-\*\"\(\)\|~\^])", r"\\\1", line).strip()
  18. @staticmethod
  19. def isChinese(line):
  20. arr = re.split(r"[ \t]+", line)
  21. if len(arr) <= 3:
  22. return True
  23. e = 0
  24. for t in arr:
  25. if not re.match(r"[a-zA-Z]+$", t):
  26. e += 1
  27. return e * 1. / len(arr) >= 0.7
  28. @staticmethod
  29. def rmWWW(txt):
  30. patts = [
  31. (r"是*(什么样的|哪家|一下|那家|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*", ""),
  32. (r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
  33. (r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down) ", " ")
  34. ]
  35. for r, p in patts:
  36. txt = re.sub(r, p, txt, flags=re.IGNORECASE)
  37. return txt
  38. def question(self, txt, tbl="qa", min_match="60%"):
  39. txt = re.sub(
  40. r"[ \r\n\t,,。??/`!!&\^%%]+",
  41. " ",
  42. rag_tokenizer.tradi2simp(
  43. rag_tokenizer.strQ2B(
  44. txt.lower()))).strip()
  45. txt = EsQueryer.rmWWW(txt)
  46. if not self.isChinese(txt):
  47. tks = rag_tokenizer.tokenize(txt).split(" ")
  48. tks_w = self.tw.weights(tks)
  49. q = [re.sub(r"[ \\\"']+", "", tk)+"^{:.4f}".format(w) for tk, w in tks_w]
  50. for i in range(1, len(tks_w)):
  51. q.append("\"%s %s\"^%.4f" % (tks_w[i - 1][0], tks_w[i][0], max(tks_w[i - 1][1], tks_w[i][1])*2))
  52. if not q:
  53. q.append(txt)
  54. return Q("bool",
  55. must=Q("query_string", fields=self.flds,
  56. type="best_fields", query=" ".join(q),
  57. boost=1)#, minimum_should_match=min_match)
  58. ), tks
  59. def need_fine_grained_tokenize(tk):
  60. if len(tk) < 4:
  61. return False
  62. if re.match(r"[0-9a-z\.\+#_\*-]+$", tk):
  63. return False
  64. return True
  65. qs, keywords = [], []
  66. for tt in self.tw.split(txt)[:256]: # .split(" "):
  67. if not tt:
  68. continue
  69. twts = self.tw.weights([tt])
  70. syns = self.syn.lookup(tt)
  71. logging.info(json.dumps(twts, ensure_ascii=False))
  72. tms = []
  73. for tk, w in sorted(twts, key=lambda x: x[1] * -1):
  74. sm = rag_tokenizer.fine_grained_tokenize(tk).split(" ") if need_fine_grained_tokenize(tk) else []
  75. sm = [
  76. re.sub(
  77. r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+",
  78. "",
  79. m) for m in sm]
  80. sm = [EsQueryer.subSpecialChar(m) for m in sm if len(m) > 1]
  81. sm = [m for m in sm if len(m) > 1]
  82. if len(sm) < 2:
  83. sm = []
  84. keywords.append(re.sub(r"[ \\\"']+", "", tk))
  85. tk_syns = self.syn.lookup(tk)
  86. tk = EsQueryer.subSpecialChar(tk)
  87. if tk.find(" ") > 0:
  88. tk = "\"%s\"" % tk
  89. if tk_syns:
  90. tk = f"({tk} %s)" % " ".join(tk_syns)
  91. if sm:
  92. tk = f"{tk} OR \"%s\" OR (\"%s\"~2)^0.5" % (
  93. " ".join(sm), " ".join(sm))
  94. tms.append((tk, w))
  95. tms = " ".join([f"({t})^{w}" for t, w in tms])
  96. if len(twts) > 1:
  97. tms += f" (\"%s\"~4)^1.5" % (" ".join([t for t, _ in twts]))
  98. if re.match(r"[0-9a-z ]+$", tt):
  99. tms = f"(\"{tt}\" OR \"%s\")" % rag_tokenizer.tokenize(tt)
  100. syns = " OR ".join(
  101. ["\"%s\"^0.7" % EsQueryer.subSpecialChar(rag_tokenizer.tokenize(s)) for s in syns])
  102. if syns:
  103. tms = f"({tms})^5 OR ({syns})^0.7"
  104. qs.append(tms)
  105. flds = copy.deepcopy(self.flds)
  106. mst = []
  107. if qs:
  108. mst.append(
  109. Q("query_string", fields=flds, type="best_fields",
  110. query=" OR ".join([f"({t})" for t in qs if t]), boost=1, minimum_should_match=min_match)
  111. )
  112. return Q("bool",
  113. must=mst,
  114. ), keywords
  115. def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3,
  116. vtweight=0.7):
  117. from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity
  118. import numpy as np
  119. sims = CosineSimilarity([avec], bvecs)
  120. def toDict(tks):
  121. d = {}
  122. if isinstance(tks, str):
  123. tks = tks.split(" ")
  124. for t, c in self.tw.weights(tks):
  125. if t not in d:
  126. d[t] = 0
  127. d[t] += c
  128. return d
  129. atks = toDict(atks)
  130. btkss = [toDict(tks) for tks in btkss]
  131. tksim = [self.similarity(atks, btks) for btks in btkss]
  132. return np.array(sims[0]) * vtweight + \
  133. np.array(tksim) * tkweight, tksim, sims[0]
  134. def similarity(self, qtwt, dtwt):
  135. if isinstance(dtwt, type("")):
  136. dtwt = {t: w for t, w in self.tw.weights(self.tw.split(dtwt))}
  137. if isinstance(qtwt, type("")):
  138. qtwt = {t: w for t, w in self.tw.weights(self.tw.split(qtwt))}
  139. s = 1e-9
  140. for k, v in qtwt.items():
  141. if k in dtwt:
  142. s += v # * dtwt[k]
  143. q = 1e-9
  144. for k, v in qtwt.items():
  145. q += v # * v
  146. #d = 1e-9
  147. # for k, v in dtwt.items():
  148. # d += v * v
  149. return s / q / max(1, math.sqrt(math.log10(max(len(qtwt.keys()), len(dtwt.keys())))))# math.sqrt(q) / math.sqrt(d)