| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import json
 - import os
 - from collections import defaultdict
 - from api.db import LLMType
 - from api.db.services.llm_service import LLMBundle
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from api.settings import retrievaler
 - from api.utils import get_uuid
 - from rag.nlp import tokenize, search
 - from rag.utils.es_conn import ELASTICSEARCH
 - from ranx import evaluate
 - import pandas as pd
 - from tqdm import tqdm
 - 
 - 
 - class Benchmark:
 -     def __init__(self, kb_id):
 -         e, kb = KnowledgebaseService.get_by_id(kb_id)
 -         self.similarity_threshold = kb.similarity_threshold
 -         self.vector_similarity_weight = kb.vector_similarity_weight
 -         self.embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)
 - 
 -     def _get_benchmarks(self, query, dataset_idxnm, count=16):
 -         req = {"question": query, "size": count, "vector": True, "similarity": self.similarity_threshold}
 -         sres = retrievaler.search(req, search.index_name(dataset_idxnm), self.embd_mdl)
 -         return sres
 - 
 -     def _get_retrieval(self, qrels, dataset_idxnm):
 -         run = defaultdict(dict)
 -         query_list = list(qrels.keys())
 -         for query in query_list:
 -             sres = self._get_benchmarks(query, dataset_idxnm)
 -             sim, _, _ = retrievaler.rerank(sres, query, 1 - self.vector_similarity_weight,
 -                                            self.vector_similarity_weight)
 -             for index, id in enumerate(sres.ids):
 -                 run[query][id] = sim[index]
 -         return run
 - 
 -     def embedding(self, docs, batch_size=16):
 -         vects = []
 -         cnts = [d["content_with_weight"] for d in docs]
 -         for i in range(0, len(cnts), batch_size):
 -             vts, c = self.embd_mdl.encode(cnts[i: i + batch_size])
 -             vects.extend(vts.tolist())
 -         assert len(docs) == len(vects)
 -         for i, d in enumerate(docs):
 -             v = vects[i]
 -             d["q_%d_vec" % len(v)] = v
 -         return docs
 - 
 -     def ms_marco_index(self, file_path, index_name):
 -         qrels = defaultdict(dict)
 -         texts = defaultdict(dict)
 -         docs = []
 -         filelist = os.listdir(file_path)
 -         for dir in filelist:
 -             data = pd.read_parquet(os.path.join(file_path, dir))
 -             for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
 - 
 -                 query = data.iloc[i]['query']
 -                 for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
 -                     d = {
 -                         "id": get_uuid()
 -                     }
 -                     tokenize(d, text, "english")
 -                     docs.append(d)
 -                     texts[d["id"]] = text
 -                     qrels[query][d["id"]] = int(rel)
 -                 if len(docs) >= 32:
 -                     docs = self.embedding(docs)
 -                     ELASTICSEARCH.bulk(docs, search.index_name(index_name))
 -                     docs = []
 - 
 -         docs = self.embedding(docs)
 -         ELASTICSEARCH.bulk(docs, search.index_name(index_name))
 -         return qrels, texts
 - 
 -     def trivia_qa_index(self, file_path, index_name):
 -         qrels = defaultdict(dict)
 -         texts = defaultdict(dict)
 -         docs = []
 -         filelist = os.listdir(file_path)
 -         for dir in filelist:
 -             data = pd.read_parquet(os.path.join(file_path, dir))
 -             for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
 -                 query = data.iloc[i]['question']
 -                 for rel, text in zip(data.iloc[i]["search_results"]['rank'],
 -                                      data.iloc[i]["search_results"]['search_context']):
 -                     d = {
 -                         "id": get_uuid()
 -                     }
 -                     tokenize(d, text, "english")
 -                     docs.append(d)
 -                     texts[d["id"]] = text
 -                     qrels[query][d["id"]] = int(rel)
 -                 if len(docs) >= 32:
 -                     docs = self.embedding(docs)
 -                     ELASTICSEARCH.bulk(docs, search.index_name(index_name))
 -                     docs = []
 - 
 -         docs = self.embedding(docs)
 -         ELASTICSEARCH.bulk(docs, search.index_name(index_name))
 -         return qrels, texts
 - 
 -     def miracl_index(self, file_path, corpus_path, index_name):
 - 
 -         corpus_total = {}
 -         for corpus_file in os.listdir(corpus_path):
 -             tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
 -             for index, i in tmp_data.iterrows():
 -                 corpus_total[i['docid']] = i['text']
 - 
 -         topics_total = {}
 -         for topics_file in os.listdir(os.path.join(file_path, 'topics')):
 -             if 'test' in topics_file:
 -                 continue
 -             tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
 -             for index, i in tmp_data.iterrows():
 -                 topics_total[i['qid']] = i['query']
 - 
 -         qrels = defaultdict(dict)
 -         texts = defaultdict(dict)
 -         docs = []
 -         for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
 -             if 'test' in qrels_file:
 -                 continue
 - 
 -             tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
 -                                    names=['qid', 'Q0', 'docid', 'relevance'])
 -             for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
 -                 query = topics_total[tmp_data.iloc[i]['qid']]
 -                 text = corpus_total[tmp_data.iloc[i]['docid']]
 -                 rel = tmp_data.iloc[i]['relevance']
 -                 d = {
 -                     "id": get_uuid()
 -                 }
 -                 tokenize(d, text, 'english')
 -                 docs.append(d)
 -                 texts[d["id"]] = text
 -                 qrels[query][d["id"]] = int(rel)
 -                 if len(docs) >= 32:
 -                     docs = self.embedding(docs)
 -                     ELASTICSEARCH.bulk(docs, search.index_name(index_name))
 -                     docs = []
 - 
 -         docs = self.embedding(docs)
 -         ELASTICSEARCH.bulk(docs, search.index_name(index_name))
 - 
 -         return qrels, texts
 - 
 -     def save_results(self, qrels, run, texts, dataset, file_path):
 -         keep_result = []
 -         run_keys = list(run.keys())
 -         for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
 -             key = run_keys[run_i]
 -             keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
 -                                 'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")})
 -         keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
 -         with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
 -             f.write('## Score For Every Query\n')
 -             for keep_result_i in keep_result:
 -                 f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
 -                 scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
 -                 scores = sorted(scores, key=lambda kk: kk[1])
 -                 for score in scores[:10]:
 -                     f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
 -         print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')
 - 
 -     def __call__(self, dataset, file_path, miracl_corpus=''):
 -         if dataset == "ms_marco_v1.1":
 -             qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
 -             run = self._get_retrieval(qrels, "benchmark_ms_marco_v1.1")
 -             print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
 -             self.save_results(qrels, run, texts, dataset, file_path)
 -         if dataset == "trivia_qa":
 -             qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
 -             run = self._get_retrieval(qrels, "benchmark_trivia_qa")
 -             print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
 -             self.save_results(qrels, run, texts, dataset, file_path)
 -         if dataset == "miracl":
 -             for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
 -                          'yo', 'zh']:
 -                 if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
 -                     print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
 -                     continue
 -                 if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
 -                     print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
 -                     continue
 -                 if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
 -                     print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
 -                     continue
 -                 if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
 -                     print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
 -                     continue
 -                 qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
 -                                                  os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
 -                                                  "benchmark_miracl_" + lang)
 -                 run = self._get_retrieval(qrels, "benchmark_miracl_" + lang)
 -                 print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
 -                 self.save_results(qrels, run, texts, dataset, file_path)
 - 
 - 
 - if __name__ == '__main__':
 -     print('*****************RAGFlow Benchmark*****************')
 -     kb_id = input('Please input kb_id:\n')
 -     ex = Benchmark(kb_id)
 -     dataset = input(
 -         'RAGFlow Benchmark Support:\n\tms_marco_v1.1:<https://huggingface.co/datasets/microsoft/ms_marco>\n\ttrivia_qa:<https://huggingface.co/datasets/mandarjoshi/trivia_qa>\n\tmiracl:<https://huggingface.co/datasets/miracl/miracl>\nPlease input dataset choice:\n')
 -     if dataset in ['ms_marco_v1.1', 'trivia_qa']:
 -         if dataset == "ms_marco_v1.1":
 -             print("Notice: Please provide the ms_marco_v1.1 dataset only. ms_marco_v2.1 is not supported!")
 -         dataset_path = input('Please input ' + dataset + ' dataset path:\n')
 -         ex(dataset, dataset_path)
 -     elif dataset == 'miracl':
 -         dataset_path = input('Please input ' + dataset + ' dataset path:\n')
 -         corpus_path = input('Please input ' + dataset + '-corpus dataset path:\n')
 -         ex(dataset, dataset_path, miracl_corpus=corpus_path)
 -     else:
 -         print("Dataset: ", dataset, "not supported!")
 
 
  |