Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import json
  17. import os
  18. import time
  19. import uuid
  20. from copy import deepcopy
  21. from api.db import LLMType, UserTenantRole
  22. from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM, TenantLLM
  23. from api.db.services import UserService
  24. from api.db.services.canvas_service import CanvasTemplateService
  25. from api.db.services.document_service import DocumentService
  26. from api.db.services.knowledgebase_service import KnowledgebaseService
  27. from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
  28. from api.db.services.user_service import TenantService, UserTenantService
  29. from api.settings import CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, LLM_FACTORY, API_KEY, LLM_BASE_URL
  30. from api.utils.file_utils import get_project_base_directory
  31. def init_superuser():
  32. user_info = {
  33. "id": uuid.uuid1().hex,
  34. "password": "admin",
  35. "nickname": "admin",
  36. "is_superuser": True,
  37. "email": "admin@ragflow.io",
  38. "creator": "system",
  39. "status": "1",
  40. }
  41. tenant = {
  42. "id": user_info["id"],
  43. "name": user_info["nickname"] + "‘s Kingdom",
  44. "llm_id": CHAT_MDL,
  45. "embd_id": EMBEDDING_MDL,
  46. "asr_id": ASR_MDL,
  47. "parser_ids": PARSERS,
  48. "img2txt_id": IMAGE2TEXT_MDL
  49. }
  50. usr_tenant = {
  51. "tenant_id": user_info["id"],
  52. "user_id": user_info["id"],
  53. "invited_by": user_info["id"],
  54. "role": UserTenantRole.OWNER
  55. }
  56. tenant_llm = []
  57. for llm in LLMService.query(fid=LLM_FACTORY):
  58. tenant_llm.append(
  59. {"tenant_id": user_info["id"], "llm_factory": LLM_FACTORY, "llm_name": llm.llm_name, "model_type": llm.model_type,
  60. "api_key": API_KEY, "api_base": LLM_BASE_URL})
  61. if not UserService.save(**user_info):
  62. print("\033[93m【ERROR】\033[0mcan't init admin.")
  63. return
  64. TenantService.insert(**tenant)
  65. UserTenantService.insert(**usr_tenant)
  66. TenantLLMService.insert_many(tenant_llm)
  67. print(
  68. "【INFO】Super user initialized. \033[93memail: admin@ragflow.io, password: admin\033[0m. Changing the password after logining is strongly recomanded.")
  69. chat_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["llm_id"])
  70. msg = chat_mdl.chat(system="", history=[
  71. {"role": "user", "content": "Hello!"}], gen_conf={})
  72. if msg.find("ERROR: ") == 0:
  73. print(
  74. "\33[91m【ERROR】\33[0m: ",
  75. "'{}' dosen't work. {}".format(
  76. tenant["llm_id"],
  77. msg))
  78. embd_mdl = LLMBundle(tenant["id"], LLMType.EMBEDDING, tenant["embd_id"])
  79. v, c = embd_mdl.encode(["Hello!"])
  80. if c == 0:
  81. print(
  82. "\33[91m【ERROR】\33[0m:",
  83. " '{}' dosen't work!".format(
  84. tenant["embd_id"]))
  85. factory_infos = [{
  86. "name": "OpenAI",
  87. "logo": "",
  88. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  89. "status": "1",
  90. }, {
  91. "name": "Tongyi-Qianwen",
  92. "logo": "",
  93. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  94. "status": "1",
  95. }, {
  96. "name": "ZHIPU-AI",
  97. "logo": "",
  98. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  99. "status": "1",
  100. },
  101. {
  102. "name": "Ollama",
  103. "logo": "",
  104. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  105. "status": "1",
  106. }, {
  107. "name": "Moonshot",
  108. "logo": "",
  109. "tags": "LLM,TEXT EMBEDDING",
  110. "status": "1",
  111. }, {
  112. "name": "FastEmbed",
  113. "logo": "",
  114. "tags": "TEXT EMBEDDING",
  115. "status": "1",
  116. }, {
  117. "name": "Xinference",
  118. "logo": "",
  119. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  120. "status": "1",
  121. },{
  122. "name": "Youdao",
  123. "logo": "",
  124. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  125. "status": "1",
  126. },{
  127. "name": "DeepSeek",
  128. "logo": "",
  129. "tags": "LLM",
  130. "status": "1",
  131. },{
  132. "name": "VolcEngine",
  133. "logo": "",
  134. "tags": "LLM, TEXT EMBEDDING",
  135. "status": "1",
  136. },{
  137. "name": "BaiChuan",
  138. "logo": "",
  139. "tags": "LLM,TEXT EMBEDDING",
  140. "status": "1",
  141. },{
  142. "name": "Jina",
  143. "logo": "",
  144. "tags": "TEXT EMBEDDING, TEXT RE-RANK",
  145. "status": "1",
  146. },{
  147. "name": "BAAI",
  148. "logo": "",
  149. "tags": "TEXT EMBEDDING, TEXT RE-RANK",
  150. "status": "1",
  151. },{
  152. "name": "MiniMax",
  153. "logo": "",
  154. "tags": "LLM,TEXT EMBEDDING",
  155. "status": "1",
  156. },{
  157. "name": "Mistral",
  158. "logo": "",
  159. "tags": "LLM,TEXT EMBEDDING",
  160. "status": "1",
  161. },{
  162. "name": "Azure-OpenAI",
  163. "logo": "",
  164. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  165. "status": "1",
  166. }
  167. # {
  168. # "name": "文心一言",
  169. # "logo": "",
  170. # "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  171. # "status": "1",
  172. # },
  173. ]
  174. def init_llm_factory():
  175. llm_infos = [
  176. # ---------------------- OpenAI ------------------------
  177. {
  178. "fid": factory_infos[0]["name"],
  179. "llm_name": "gpt-4o",
  180. "tags": "LLM,CHAT,128K",
  181. "max_tokens": 128000,
  182. "model_type": LLMType.CHAT.value + "," + LLMType.IMAGE2TEXT.value
  183. }, {
  184. "fid": factory_infos[0]["name"],
  185. "llm_name": "gpt-3.5-turbo",
  186. "tags": "LLM,CHAT,4K",
  187. "max_tokens": 4096,
  188. "model_type": LLMType.CHAT.value
  189. }, {
  190. "fid": factory_infos[0]["name"],
  191. "llm_name": "gpt-3.5-turbo-16k-0613",
  192. "tags": "LLM,CHAT,16k",
  193. "max_tokens": 16385,
  194. "model_type": LLMType.CHAT.value
  195. }, {
  196. "fid": factory_infos[0]["name"],
  197. "llm_name": "text-embedding-ada-002",
  198. "tags": "TEXT EMBEDDING,8K",
  199. "max_tokens": 8191,
  200. "model_type": LLMType.EMBEDDING.value
  201. }, {
  202. "fid": factory_infos[0]["name"],
  203. "llm_name": "text-embedding-3-small",
  204. "tags": "TEXT EMBEDDING,8K",
  205. "max_tokens": 8191,
  206. "model_type": LLMType.EMBEDDING.value
  207. }, {
  208. "fid": factory_infos[0]["name"],
  209. "llm_name": "text-embedding-3-large",
  210. "tags": "TEXT EMBEDDING,8K",
  211. "max_tokens": 8191,
  212. "model_type": LLMType.EMBEDDING.value
  213. }, {
  214. "fid": factory_infos[0]["name"],
  215. "llm_name": "whisper-1",
  216. "tags": "SPEECH2TEXT",
  217. "max_tokens": 25 * 1024 * 1024,
  218. "model_type": LLMType.SPEECH2TEXT.value
  219. }, {
  220. "fid": factory_infos[0]["name"],
  221. "llm_name": "gpt-4",
  222. "tags": "LLM,CHAT,8K",
  223. "max_tokens": 8191,
  224. "model_type": LLMType.CHAT.value
  225. }, {
  226. "fid": factory_infos[0]["name"],
  227. "llm_name": "gpt-4-turbo",
  228. "tags": "LLM,CHAT,8K",
  229. "max_tokens": 8191,
  230. "model_type": LLMType.CHAT.value
  231. },{
  232. "fid": factory_infos[0]["name"],
  233. "llm_name": "gpt-4-32k",
  234. "tags": "LLM,CHAT,32K",
  235. "max_tokens": 32768,
  236. "model_type": LLMType.CHAT.value
  237. }, {
  238. "fid": factory_infos[0]["name"],
  239. "llm_name": "gpt-4-vision-preview",
  240. "tags": "LLM,CHAT,IMAGE2TEXT",
  241. "max_tokens": 765,
  242. "model_type": LLMType.IMAGE2TEXT.value
  243. },
  244. # ----------------------- Qwen -----------------------
  245. {
  246. "fid": factory_infos[1]["name"],
  247. "llm_name": "qwen-turbo",
  248. "tags": "LLM,CHAT,8K",
  249. "max_tokens": 8191,
  250. "model_type": LLMType.CHAT.value
  251. }, {
  252. "fid": factory_infos[1]["name"],
  253. "llm_name": "qwen-plus",
  254. "tags": "LLM,CHAT,32K",
  255. "max_tokens": 32768,
  256. "model_type": LLMType.CHAT.value
  257. }, {
  258. "fid": factory_infos[1]["name"],
  259. "llm_name": "qwen-max-1201",
  260. "tags": "LLM,CHAT,6K",
  261. "max_tokens": 5899,
  262. "model_type": LLMType.CHAT.value
  263. }, {
  264. "fid": factory_infos[1]["name"],
  265. "llm_name": "text-embedding-v2",
  266. "tags": "TEXT EMBEDDING,2K",
  267. "max_tokens": 2048,
  268. "model_type": LLMType.EMBEDDING.value
  269. }, {
  270. "fid": factory_infos[1]["name"],
  271. "llm_name": "paraformer-realtime-8k-v1",
  272. "tags": "SPEECH2TEXT",
  273. "max_tokens": 25 * 1024 * 1024,
  274. "model_type": LLMType.SPEECH2TEXT.value
  275. }, {
  276. "fid": factory_infos[1]["name"],
  277. "llm_name": "qwen-vl-max",
  278. "tags": "LLM,CHAT,IMAGE2TEXT",
  279. "max_tokens": 765,
  280. "model_type": LLMType.IMAGE2TEXT.value
  281. },
  282. # ---------------------- ZhipuAI ----------------------
  283. {
  284. "fid": factory_infos[2]["name"],
  285. "llm_name": "glm-3-turbo",
  286. "tags": "LLM,CHAT,",
  287. "max_tokens": 128 * 1000,
  288. "model_type": LLMType.CHAT.value
  289. }, {
  290. "fid": factory_infos[2]["name"],
  291. "llm_name": "glm-4",
  292. "tags": "LLM,CHAT,",
  293. "max_tokens": 128 * 1000,
  294. "model_type": LLMType.CHAT.value
  295. }, {
  296. "fid": factory_infos[2]["name"],
  297. "llm_name": "glm-4v",
  298. "tags": "LLM,CHAT,IMAGE2TEXT",
  299. "max_tokens": 2000,
  300. "model_type": LLMType.IMAGE2TEXT.value
  301. },
  302. {
  303. "fid": factory_infos[2]["name"],
  304. "llm_name": "embedding-2",
  305. "tags": "TEXT EMBEDDING",
  306. "max_tokens": 512,
  307. "model_type": LLMType.EMBEDDING.value
  308. },
  309. # ------------------------ Moonshot -----------------------
  310. {
  311. "fid": factory_infos[4]["name"],
  312. "llm_name": "moonshot-v1-8k",
  313. "tags": "LLM,CHAT,",
  314. "max_tokens": 7900,
  315. "model_type": LLMType.CHAT.value
  316. }, {
  317. "fid": factory_infos[4]["name"],
  318. "llm_name": "moonshot-v1-32k",
  319. "tags": "LLM,CHAT,",
  320. "max_tokens": 32768,
  321. "model_type": LLMType.CHAT.value
  322. }, {
  323. "fid": factory_infos[4]["name"],
  324. "llm_name": "moonshot-v1-128k",
  325. "tags": "LLM,CHAT",
  326. "max_tokens": 128 * 1000,
  327. "model_type": LLMType.CHAT.value
  328. },
  329. # ------------------------ FastEmbed -----------------------
  330. {
  331. "fid": factory_infos[5]["name"],
  332. "llm_name": "BAAI/bge-small-en-v1.5",
  333. "tags": "TEXT EMBEDDING,",
  334. "max_tokens": 512,
  335. "model_type": LLMType.EMBEDDING.value
  336. }, {
  337. "fid": factory_infos[5]["name"],
  338. "llm_name": "BAAI/bge-small-zh-v1.5",
  339. "tags": "TEXT EMBEDDING,",
  340. "max_tokens": 512,
  341. "model_type": LLMType.EMBEDDING.value
  342. }, {
  343. }, {
  344. "fid": factory_infos[5]["name"],
  345. "llm_name": "BAAI/bge-base-en-v1.5",
  346. "tags": "TEXT EMBEDDING,",
  347. "max_tokens": 512,
  348. "model_type": LLMType.EMBEDDING.value
  349. }, {
  350. }, {
  351. "fid": factory_infos[5]["name"],
  352. "llm_name": "BAAI/bge-large-en-v1.5",
  353. "tags": "TEXT EMBEDDING,",
  354. "max_tokens": 512,
  355. "model_type": LLMType.EMBEDDING.value
  356. }, {
  357. "fid": factory_infos[5]["name"],
  358. "llm_name": "sentence-transformers/all-MiniLM-L6-v2",
  359. "tags": "TEXT EMBEDDING,",
  360. "max_tokens": 512,
  361. "model_type": LLMType.EMBEDDING.value
  362. }, {
  363. "fid": factory_infos[5]["name"],
  364. "llm_name": "nomic-ai/nomic-embed-text-v1.5",
  365. "tags": "TEXT EMBEDDING,",
  366. "max_tokens": 8192,
  367. "model_type": LLMType.EMBEDDING.value
  368. }, {
  369. "fid": factory_infos[5]["name"],
  370. "llm_name": "jinaai/jina-embeddings-v2-small-en",
  371. "tags": "TEXT EMBEDDING,",
  372. "max_tokens": 2147483648,
  373. "model_type": LLMType.EMBEDDING.value
  374. }, {
  375. "fid": factory_infos[5]["name"],
  376. "llm_name": "jinaai/jina-embeddings-v2-base-en",
  377. "tags": "TEXT EMBEDDING,",
  378. "max_tokens": 2147483648,
  379. "model_type": LLMType.EMBEDDING.value
  380. },
  381. # ------------------------ Youdao -----------------------
  382. {
  383. "fid": factory_infos[7]["name"],
  384. "llm_name": "maidalun1020/bce-embedding-base_v1",
  385. "tags": "TEXT EMBEDDING,",
  386. "max_tokens": 512,
  387. "model_type": LLMType.EMBEDDING.value
  388. },
  389. {
  390. "fid": factory_infos[7]["name"],
  391. "llm_name": "maidalun1020/bce-reranker-base_v1",
  392. "tags": "RE-RANK, 512",
  393. "max_tokens": 512,
  394. "model_type": LLMType.RERANK.value
  395. },
  396. # ------------------------ DeepSeek -----------------------
  397. {
  398. "fid": factory_infos[8]["name"],
  399. "llm_name": "deepseek-chat",
  400. "tags": "LLM,CHAT,",
  401. "max_tokens": 32768,
  402. "model_type": LLMType.CHAT.value
  403. },
  404. {
  405. "fid": factory_infos[8]["name"],
  406. "llm_name": "deepseek-coder",
  407. "tags": "LLM,CHAT,",
  408. "max_tokens": 16385,
  409. "model_type": LLMType.CHAT.value
  410. },
  411. # ------------------------ VolcEngine -----------------------
  412. {
  413. "fid": factory_infos[9]["name"],
  414. "llm_name": "Skylark2-pro-32k",
  415. "tags": "LLM,CHAT,32k",
  416. "max_tokens": 32768,
  417. "model_type": LLMType.CHAT.value
  418. },
  419. {
  420. "fid": factory_infos[9]["name"],
  421. "llm_name": "Skylark2-pro-4k",
  422. "tags": "LLM,CHAT,4k",
  423. "max_tokens": 4096,
  424. "model_type": LLMType.CHAT.value
  425. },
  426. # ------------------------ BaiChuan -----------------------
  427. {
  428. "fid": factory_infos[10]["name"],
  429. "llm_name": "Baichuan2-Turbo",
  430. "tags": "LLM,CHAT,32K",
  431. "max_tokens": 32768,
  432. "model_type": LLMType.CHAT.value
  433. },
  434. {
  435. "fid": factory_infos[10]["name"],
  436. "llm_name": "Baichuan2-Turbo-192k",
  437. "tags": "LLM,CHAT,192K",
  438. "max_tokens": 196608,
  439. "model_type": LLMType.CHAT.value
  440. },
  441. {
  442. "fid": factory_infos[10]["name"],
  443. "llm_name": "Baichuan3-Turbo",
  444. "tags": "LLM,CHAT,32K",
  445. "max_tokens": 32768,
  446. "model_type": LLMType.CHAT.value
  447. },
  448. {
  449. "fid": factory_infos[10]["name"],
  450. "llm_name": "Baichuan3-Turbo-128k",
  451. "tags": "LLM,CHAT,128K",
  452. "max_tokens": 131072,
  453. "model_type": LLMType.CHAT.value
  454. },
  455. {
  456. "fid": factory_infos[10]["name"],
  457. "llm_name": "Baichuan4",
  458. "tags": "LLM,CHAT,128K",
  459. "max_tokens": 131072,
  460. "model_type": LLMType.CHAT.value
  461. },
  462. {
  463. "fid": factory_infos[10]["name"],
  464. "llm_name": "Baichuan-Text-Embedding",
  465. "tags": "TEXT EMBEDDING",
  466. "max_tokens": 512,
  467. "model_type": LLMType.EMBEDDING.value
  468. },
  469. # ------------------------ Jina -----------------------
  470. {
  471. "fid": factory_infos[11]["name"],
  472. "llm_name": "jina-reranker-v1-base-en",
  473. "tags": "RE-RANK,8k",
  474. "max_tokens": 8196,
  475. "model_type": LLMType.RERANK.value
  476. },
  477. {
  478. "fid": factory_infos[11]["name"],
  479. "llm_name": "jina-reranker-v1-turbo-en",
  480. "tags": "RE-RANK,8k",
  481. "max_tokens": 8196,
  482. "model_type": LLMType.RERANK.value
  483. },
  484. {
  485. "fid": factory_infos[11]["name"],
  486. "llm_name": "jina-reranker-v1-tiny-en",
  487. "tags": "RE-RANK,8k",
  488. "max_tokens": 8196,
  489. "model_type": LLMType.RERANK.value
  490. },
  491. {
  492. "fid": factory_infos[11]["name"],
  493. "llm_name": "jina-colbert-v1-en",
  494. "tags": "RE-RANK,8k",
  495. "max_tokens": 8196,
  496. "model_type": LLMType.RERANK.value
  497. },
  498. {
  499. "fid": factory_infos[11]["name"],
  500. "llm_name": "jina-embeddings-v2-base-en",
  501. "tags": "TEXT EMBEDDING",
  502. "max_tokens": 8196,
  503. "model_type": LLMType.EMBEDDING.value
  504. },
  505. {
  506. "fid": factory_infos[11]["name"],
  507. "llm_name": "jina-embeddings-v2-base-de",
  508. "tags": "TEXT EMBEDDING",
  509. "max_tokens": 8196,
  510. "model_type": LLMType.EMBEDDING.value
  511. },
  512. {
  513. "fid": factory_infos[11]["name"],
  514. "llm_name": "jina-embeddings-v2-base-es",
  515. "tags": "TEXT EMBEDDING",
  516. "max_tokens": 8196,
  517. "model_type": LLMType.EMBEDDING.value
  518. },
  519. {
  520. "fid": factory_infos[11]["name"],
  521. "llm_name": "jina-embeddings-v2-base-code",
  522. "tags": "TEXT EMBEDDING",
  523. "max_tokens": 8196,
  524. "model_type": LLMType.EMBEDDING.value
  525. },
  526. {
  527. "fid": factory_infos[11]["name"],
  528. "llm_name": "jina-embeddings-v2-base-zh",
  529. "tags": "TEXT EMBEDDING",
  530. "max_tokens": 8196,
  531. "model_type": LLMType.EMBEDDING.value
  532. },
  533. # ------------------------ BAAI -----------------------
  534. {
  535. "fid": factory_infos[12]["name"],
  536. "llm_name": "BAAI/bge-large-zh-v1.5",
  537. "tags": "TEXT EMBEDDING,",
  538. "max_tokens": 1024,
  539. "model_type": LLMType.EMBEDDING.value
  540. },
  541. {
  542. "fid": factory_infos[12]["name"],
  543. "llm_name": "BAAI/bge-reranker-v2-m3",
  544. "tags": "RE-RANK,2k",
  545. "max_tokens": 2048,
  546. "model_type": LLMType.RERANK.value
  547. },
  548. # ------------------------ Minimax -----------------------
  549. {
  550. "fid": factory_infos[13]["name"],
  551. "llm_name": "abab6.5-chat",
  552. "tags": "LLM,CHAT,8k",
  553. "max_tokens": 8192,
  554. "model_type": LLMType.CHAT.value
  555. },
  556. {
  557. "fid": factory_infos[13]["name"],
  558. "llm_name": "abab6.5s-chat",
  559. "tags": "LLM,CHAT,245k",
  560. "max_tokens": 245760,
  561. "model_type": LLMType.CHAT.value
  562. },
  563. {
  564. "fid": factory_infos[13]["name"],
  565. "llm_name": "abab6.5t-chat",
  566. "tags": "LLM,CHAT,8k",
  567. "max_tokens": 8192,
  568. "model_type": LLMType.CHAT.value
  569. },
  570. {
  571. "fid": factory_infos[13]["name"],
  572. "llm_name": "abab6.5g-chat",
  573. "tags": "LLM,CHAT,8k",
  574. "max_tokens": 8192,
  575. "model_type": LLMType.CHAT.value
  576. },
  577. {
  578. "fid": factory_infos[13]["name"],
  579. "llm_name": "abab5.5-chat",
  580. "tags": "LLM,CHAT,16k",
  581. "max_tokens": 16384,
  582. "model_type": LLMType.CHAT.value
  583. },
  584. {
  585. "fid": factory_infos[13]["name"],
  586. "llm_name": "abab5.5s-chat",
  587. "tags": "LLM,CHAT,8k",
  588. "max_tokens": 8192,
  589. "model_type": LLMType.CHAT.value
  590. },
  591. # ------------------------ Mistral -----------------------
  592. {
  593. "fid": factory_infos[14]["name"],
  594. "llm_name": "open-mixtral-8x22b",
  595. "tags": "LLM,CHAT,64k",
  596. "max_tokens": 64000,
  597. "model_type": LLMType.CHAT.value
  598. },
  599. {
  600. "fid": factory_infos[14]["name"],
  601. "llm_name": "open-mixtral-8x7b",
  602. "tags": "LLM,CHAT,32k",
  603. "max_tokens": 32000,
  604. "model_type": LLMType.CHAT.value
  605. },
  606. {
  607. "fid": factory_infos[14]["name"],
  608. "llm_name": "open-mistral-7b",
  609. "tags": "LLM,CHAT,32k",
  610. "max_tokens": 32000,
  611. "model_type": LLMType.CHAT.value
  612. },
  613. {
  614. "fid": factory_infos[14]["name"],
  615. "llm_name": "mistral-large-latest",
  616. "tags": "LLM,CHAT,32k",
  617. "max_tokens": 32000,
  618. "model_type": LLMType.CHAT.value
  619. },
  620. {
  621. "fid": factory_infos[14]["name"],
  622. "llm_name": "mistral-small-latest",
  623. "tags": "LLM,CHAT,32k",
  624. "max_tokens": 32000,
  625. "model_type": LLMType.CHAT.value
  626. },
  627. {
  628. "fid": factory_infos[14]["name"],
  629. "llm_name": "mistral-medium-latest",
  630. "tags": "LLM,CHAT,32k",
  631. "max_tokens": 32000,
  632. "model_type": LLMType.CHAT.value
  633. },
  634. {
  635. "fid": factory_infos[14]["name"],
  636. "llm_name": "codestral-latest",
  637. "tags": "LLM,CHAT,32k",
  638. "max_tokens": 32000,
  639. "model_type": LLMType.CHAT.value
  640. },
  641. {
  642. "fid": factory_infos[14]["name"],
  643. "llm_name": "mistral-embed",
  644. "tags": "LLM,CHAT,8k",
  645. "max_tokens": 8192,
  646. "model_type": LLMType.EMBEDDING
  647. },
  648. # ------------------------ Azure OpenAI -----------------------
  649. # Please ensure the llm_name is the same as the name in Azure
  650. # OpenAI deployment name (e.g., azure-gpt-4o). And the llm_name
  651. # must different from the OpenAI llm_name
  652. #
  653. # Each model must be deployed in the Azure OpenAI service, otherwise,
  654. # you will receive an error message 'The API deployment for
  655. # this resource does not exist'
  656. {
  657. "fid": factory_infos[15]["name"],
  658. "llm_name": "azure-gpt-4o",
  659. "tags": "LLM,CHAT,128K",
  660. "max_tokens": 128000,
  661. "model_type": LLMType.CHAT.value + "," + LLMType.IMAGE2TEXT.value
  662. }, {
  663. "fid": factory_infos[15]["name"],
  664. "llm_name": "azure-gpt-35-turbo",
  665. "tags": "LLM,CHAT,4K",
  666. "max_tokens": 4096,
  667. "model_type": LLMType.CHAT.value
  668. }, {
  669. "fid": factory_infos[15]["name"],
  670. "llm_name": "azure-gpt-35-turbo-16k",
  671. "tags": "LLM,CHAT,16k",
  672. "max_tokens": 16385,
  673. "model_type": LLMType.CHAT.value
  674. }, {
  675. "fid": factory_infos[15]["name"],
  676. "llm_name": "azure-text-embedding-ada-002",
  677. "tags": "TEXT EMBEDDING,8K",
  678. "max_tokens": 8191,
  679. "model_type": LLMType.EMBEDDING.value
  680. }, {
  681. "fid": factory_infos[15]["name"],
  682. "llm_name": "azure-text-embedding-3-small",
  683. "tags": "TEXT EMBEDDING,8K",
  684. "max_tokens": 8191,
  685. "model_type": LLMType.EMBEDDING.value
  686. }, {
  687. "fid": factory_infos[15]["name"],
  688. "llm_name": "azure-text-embedding-3-large",
  689. "tags": "TEXT EMBEDDING,8K",
  690. "max_tokens": 8191,
  691. "model_type": LLMType.EMBEDDING.value
  692. },{
  693. "fid": factory_infos[15]["name"],
  694. "llm_name": "azure-whisper-1",
  695. "tags": "SPEECH2TEXT",
  696. "max_tokens": 25 * 1024 * 1024,
  697. "model_type": LLMType.SPEECH2TEXT.value
  698. },
  699. {
  700. "fid": factory_infos[15]["name"],
  701. "llm_name": "azure-gpt-4",
  702. "tags": "LLM,CHAT,8K",
  703. "max_tokens": 8191,
  704. "model_type": LLMType.CHAT.value
  705. }, {
  706. "fid": factory_infos[15]["name"],
  707. "llm_name": "azure-gpt-4-turbo",
  708. "tags": "LLM,CHAT,8K",
  709. "max_tokens": 8191,
  710. "model_type": LLMType.CHAT.value
  711. }, {
  712. "fid": factory_infos[15]["name"],
  713. "llm_name": "azure-gpt-4-32k",
  714. "tags": "LLM,CHAT,32K",
  715. "max_tokens": 32768,
  716. "model_type": LLMType.CHAT.value
  717. }, {
  718. "fid": factory_infos[15]["name"],
  719. "llm_name": "azure-gpt-4-vision-preview",
  720. "tags": "LLM,CHAT,IMAGE2TEXT",
  721. "max_tokens": 765,
  722. "model_type": LLMType.IMAGE2TEXT.value
  723. },
  724. ]
  725. for info in factory_infos:
  726. try:
  727. LLMFactoriesService.save(**info)
  728. except Exception as e:
  729. pass
  730. for info in llm_infos:
  731. try:
  732. LLMService.save(**info)
  733. except Exception as e:
  734. pass
  735. LLMFactoriesService.filter_delete([LLMFactories.name == "Local"])
  736. LLMService.filter_delete([LLM.fid == "Local"])
  737. LLMService.filter_delete([LLM.fid == "Moonshot", LLM.llm_name == "flag-embedding"])
  738. TenantLLMService.filter_delete([TenantLLM.llm_factory == "Moonshot", TenantLLM.llm_name == "flag-embedding"])
  739. LLMFactoriesService.filter_delete([LLMFactoriesService.model.name == "QAnything"])
  740. LLMService.filter_delete([LLMService.model.fid == "QAnything"])
  741. TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
  742. ## insert openai two embedding models to the current openai user.
  743. print("Start to insert 2 OpenAI embedding models...")
  744. tenant_ids = set([row["tenant_id"] for row in TenantLLMService.get_openai_models()])
  745. for tid in tenant_ids:
  746. for row in TenantLLMService.query(llm_factory="OpenAI", tenant_id=tid):
  747. row = row.to_dict()
  748. row["model_type"] = LLMType.EMBEDDING.value
  749. row["llm_name"] = "text-embedding-3-small"
  750. row["used_tokens"] = 0
  751. try:
  752. TenantLLMService.save(**row)
  753. row = deepcopy(row)
  754. row["llm_name"] = "text-embedding-3-large"
  755. TenantLLMService.save(**row)
  756. except Exception as e:
  757. pass
  758. break
  759. for kb_id in KnowledgebaseService.get_all_ids():
  760. KnowledgebaseService.update_by_id(kb_id, {"doc_num": DocumentService.get_kb_doc_count(kb_id)})
  761. """
  762. drop table llm;
  763. drop table llm_factories;
  764. update tenant set parser_ids='naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One';
  765. alter table knowledgebase modify avatar longtext;
  766. alter table user modify avatar longtext;
  767. alter table dialog modify icon longtext;
  768. """
  769. def add_graph_templates():
  770. dir = os.path.join(get_project_base_directory(), "graph", "templates")
  771. for fnm in os.listdir(dir):
  772. try:
  773. cnvs = json.load(open(os.path.join(dir, fnm), "r"))
  774. try:
  775. CanvasTemplateService.save(**cnvs)
  776. except:
  777. CanvasTemplateService.update_by_id(cnvs["id"], cnvs)
  778. except Exception as e:
  779. print("Add graph templates error: ", e)
  780. print("------------", flush=True)
  781. def init_web_data():
  782. start_time = time.time()
  783. init_llm_factory()
  784. if not UserService.get_all().count():
  785. init_superuser()
  786. add_graph_templates()
  787. print("init web data success:{}".format(time.time() - start_time))
  788. if __name__ == '__main__':
  789. init_web_db()
  790. init_web_data()