You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

task_executor.py 18KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. import sys
  18. from api.utils.log_utils import initRootLogger
  19. CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1]
  20. initRootLogger(f"task_executor_{CONSUMER_NO}")
  21. for module in ["pdfminer"]:
  22. module_logger = logging.getLogger(module)
  23. module_logger.setLevel(logging.WARNING)
  24. for module in ["peewee"]:
  25. module_logger = logging.getLogger(module)
  26. module_logger.handlers.clear()
  27. module_logger.propagate = True
  28. from datetime import datetime
  29. import json
  30. import os
  31. import hashlib
  32. import copy
  33. import re
  34. import sys
  35. import time
  36. import threading
  37. from functools import partial
  38. from io import BytesIO
  39. from multiprocessing.context import TimeoutError
  40. from timeit import default_timer as timer
  41. import numpy as np
  42. import pandas as pd
  43. from api.db import LLMType, ParserType
  44. from api.db.services.dialog_service import keyword_extraction, question_proposal
  45. from api.db.services.document_service import DocumentService
  46. from api.db.services.llm_service import LLMBundle
  47. from api.db.services.task_service import TaskService
  48. from api.db.services.file2document_service import File2DocumentService
  49. from api import settings
  50. from api.db.db_models import close_connection
  51. from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, \
  52. knowledge_graph, email
  53. from rag.nlp import search, rag_tokenizer
  54. from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
  55. from rag.settings import DOC_MAXIMUM_SIZE, SVR_QUEUE_NAME
  56. from rag.utils import rmSpace, num_tokens_from_string
  57. from rag.utils.redis_conn import REDIS_CONN, Payload
  58. from rag.utils.storage_factory import STORAGE_IMPL
  59. BATCH_SIZE = 64
  60. FACTORY = {
  61. "general": naive,
  62. ParserType.NAIVE.value: naive,
  63. ParserType.PAPER.value: paper,
  64. ParserType.BOOK.value: book,
  65. ParserType.PRESENTATION.value: presentation,
  66. ParserType.MANUAL.value: manual,
  67. ParserType.LAWS.value: laws,
  68. ParserType.QA.value: qa,
  69. ParserType.TABLE.value: table,
  70. ParserType.RESUME.value: resume,
  71. ParserType.PICTURE.value: picture,
  72. ParserType.ONE.value: one,
  73. ParserType.AUDIO.value: audio,
  74. ParserType.EMAIL.value: email,
  75. ParserType.KG.value: knowledge_graph
  76. }
  77. CONSUMER_NAME = "task_consumer_" + CONSUMER_NO
  78. PAYLOAD: Payload | None = None
  79. BOOT_AT = datetime.now().isoformat()
  80. DONE_TASKS = 0
  81. RETRY_TASKS = 0
  82. PENDING_TASKS = 0
  83. HEAD_CREATED_AT = ""
  84. HEAD_DETAIL = ""
  85. def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
  86. global PAYLOAD
  87. if prog is not None and prog < 0:
  88. msg = "[ERROR]" + msg
  89. cancel = TaskService.do_cancel(task_id)
  90. if cancel:
  91. msg += " [Canceled]"
  92. prog = -1
  93. if to_page > 0:
  94. if msg:
  95. msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
  96. d = {"progress_msg": msg}
  97. if prog is not None:
  98. d["progress"] = prog
  99. try:
  100. TaskService.update_progress(task_id, d)
  101. except Exception:
  102. logging.exception(f"set_progress({task_id}) got exception")
  103. close_connection()
  104. if cancel:
  105. if PAYLOAD:
  106. PAYLOAD.ack()
  107. PAYLOAD = None
  108. os._exit(0)
  109. def collect():
  110. global CONSUMER_NAME, PAYLOAD
  111. try:
  112. PAYLOAD = REDIS_CONN.get_unacked_for(CONSUMER_NAME, SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
  113. if not PAYLOAD:
  114. PAYLOAD = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", CONSUMER_NAME)
  115. if not PAYLOAD:
  116. time.sleep(1)
  117. return pd.DataFrame()
  118. except Exception:
  119. logging.exception("Get task event from queue exception")
  120. return pd.DataFrame()
  121. msg = PAYLOAD.get_message()
  122. if not msg:
  123. return pd.DataFrame()
  124. if TaskService.do_cancel(msg["id"]):
  125. logging.info("Task {} has been canceled.".format(msg["id"]))
  126. return pd.DataFrame()
  127. tasks = TaskService.get_tasks(msg["id"])
  128. if not tasks:
  129. logging.warning("{} empty task!".format(msg["id"]))
  130. return []
  131. tasks = pd.DataFrame(tasks)
  132. if msg.get("type", "") == "raptor":
  133. tasks["task_type"] = "raptor"
  134. return tasks
  135. def get_storage_binary(bucket, name):
  136. return STORAGE_IMPL.get(bucket, name)
  137. def build(row):
  138. if row["size"] > DOC_MAXIMUM_SIZE:
  139. set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
  140. (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
  141. return []
  142. callback = partial(
  143. set_progress,
  144. row["id"],
  145. row["from_page"],
  146. row["to_page"])
  147. chunker = FACTORY[row["parser_id"].lower()]
  148. try:
  149. st = timer()
  150. bucket, name = File2DocumentService.get_storage_address(doc_id=row["doc_id"])
  151. binary = get_storage_binary(bucket, name)
  152. logging.info(
  153. "From minio({}) {}/{}".format(timer() - st, row["location"], row["name"]))
  154. except TimeoutError:
  155. callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.")
  156. logging.exception(
  157. "Minio {}/{} got timeout: Fetch file from minio timeout.".format(row["location"], row["name"]))
  158. return
  159. except Exception as e:
  160. if re.search("(No such file|not found)", str(e)):
  161. callback(-1, "Can not find file <%s> from minio. Could you try it again?" % row["name"])
  162. else:
  163. callback(-1, "Get file from minio: %s" % str(e).replace("'", ""))
  164. logging.exception("Chunking {}/{} got exception".format(row["location"], row["name"]))
  165. return
  166. try:
  167. cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
  168. to_page=row["to_page"], lang=row["language"], callback=callback,
  169. kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
  170. logging.info("Chunking({}) {}/{} done".format(timer() - st, row["location"], row["name"]))
  171. except Exception as e:
  172. callback(-1, "Internal server error while chunking: %s" %
  173. str(e).replace("'", ""))
  174. logging.exception("Chunking {}/{} got exception".format(row["location"], row["name"]))
  175. return
  176. docs = []
  177. doc = {
  178. "doc_id": row["doc_id"],
  179. "kb_id": str(row["kb_id"])
  180. }
  181. el = 0
  182. for ck in cks:
  183. d = copy.deepcopy(doc)
  184. d.update(ck)
  185. md5 = hashlib.md5()
  186. md5.update((ck["content_with_weight"] +
  187. str(d["doc_id"])).encode("utf-8"))
  188. d["id"] = md5.hexdigest()
  189. d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
  190. d["create_timestamp_flt"] = datetime.now().timestamp()
  191. if not d.get("image"):
  192. d["img_id"] = ""
  193. d["page_num_list"] = json.dumps([])
  194. d["position_list"] = json.dumps([])
  195. d["top_list"] = json.dumps([])
  196. docs.append(d)
  197. continue
  198. try:
  199. output_buffer = BytesIO()
  200. if isinstance(d["image"], bytes):
  201. output_buffer = BytesIO(d["image"])
  202. else:
  203. d["image"].save(output_buffer, format='JPEG')
  204. st = timer()
  205. STORAGE_IMPL.put(row["kb_id"], d["id"], output_buffer.getvalue())
  206. el += timer() - st
  207. except Exception:
  208. logging.exception(
  209. "Saving image of chunk {}/{}/{} got exception".format(row["location"], row["name"], d["_id"]))
  210. d["img_id"] = "{}-{}".format(row["kb_id"], d["id"])
  211. del d["image"]
  212. docs.append(d)
  213. logging.info("MINIO PUT({}):{}".format(row["name"], el))
  214. if row["parser_config"].get("auto_keywords", 0):
  215. st = timer()
  216. callback(msg="Start to generate keywords for every chunk ...")
  217. chat_mdl = LLMBundle(row["tenant_id"], LLMType.CHAT, llm_name=row["llm_id"], lang=row["language"])
  218. for d in docs:
  219. d["important_kwd"] = keyword_extraction(chat_mdl, d["content_with_weight"],
  220. row["parser_config"]["auto_keywords"]).split(",")
  221. d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
  222. callback(msg="Keywords generation completed in {:.2f}s".format(timer() - st))
  223. if row["parser_config"].get("auto_questions", 0):
  224. st = timer()
  225. callback(msg="Start to generate questions for every chunk ...")
  226. chat_mdl = LLMBundle(row["tenant_id"], LLMType.CHAT, llm_name=row["llm_id"], lang=row["language"])
  227. for d in docs:
  228. qst = question_proposal(chat_mdl, d["content_with_weight"], row["parser_config"]["auto_questions"])
  229. d["content_with_weight"] = f"Question: \n{qst}\n\nAnswer:\n" + d["content_with_weight"]
  230. qst = rag_tokenizer.tokenize(qst)
  231. if "content_ltks" in d:
  232. d["content_ltks"] += " " + qst
  233. if "content_sm_ltks" in d:
  234. d["content_sm_ltks"] += " " + rag_tokenizer.fine_grained_tokenize(qst)
  235. callback(msg="Question generation completed in {:.2f}s".format(timer() - st))
  236. return docs
  237. def init_kb(row, vector_size: int):
  238. idxnm = search.index_name(row["tenant_id"])
  239. return settings.docStoreConn.createIdx(idxnm, row["kb_id"], vector_size)
  240. def embedding(docs, mdl, parser_config=None, callback=None):
  241. if parser_config is None:
  242. parser_config = {}
  243. batch_size = 32
  244. tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
  245. re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
  246. tk_count = 0
  247. if len(tts) == len(cnts):
  248. tts_ = np.array([])
  249. for i in range(0, len(tts), batch_size):
  250. vts, c = mdl.encode(tts[i: i + batch_size])
  251. if len(tts_) == 0:
  252. tts_ = vts
  253. else:
  254. tts_ = np.concatenate((tts_, vts), axis=0)
  255. tk_count += c
  256. callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
  257. tts = tts_
  258. cnts_ = np.array([])
  259. for i in range(0, len(cnts), batch_size):
  260. vts, c = mdl.encode(cnts[i: i + batch_size])
  261. if len(cnts_) == 0:
  262. cnts_ = vts
  263. else:
  264. cnts_ = np.concatenate((cnts_, vts), axis=0)
  265. tk_count += c
  266. callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
  267. cnts = cnts_
  268. title_w = float(parser_config.get("filename_embd_weight", 0.1))
  269. vects = (title_w * tts + (1 - title_w) *
  270. cnts) if len(tts) == len(cnts) else cnts
  271. assert len(vects) == len(docs)
  272. vector_size = 0
  273. for i, d in enumerate(docs):
  274. v = vects[i].tolist()
  275. vector_size = len(v)
  276. d["q_%d_vec" % len(v)] = v
  277. return tk_count, vector_size
  278. def run_raptor(row, chat_mdl, embd_mdl, callback=None):
  279. vts, _ = embd_mdl.encode(["ok"])
  280. vector_size = len(vts[0])
  281. vctr_nm = "q_%d_vec" % vector_size
  282. chunks = []
  283. for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],
  284. fields=["content_with_weight", vctr_nm]):
  285. chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
  286. raptor = Raptor(
  287. row["parser_config"]["raptor"].get("max_cluster", 64),
  288. chat_mdl,
  289. embd_mdl,
  290. row["parser_config"]["raptor"]["prompt"],
  291. row["parser_config"]["raptor"]["max_token"],
  292. row["parser_config"]["raptor"]["threshold"]
  293. )
  294. original_length = len(chunks)
  295. raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
  296. doc = {
  297. "doc_id": row["doc_id"],
  298. "kb_id": [str(row["kb_id"])],
  299. "docnm_kwd": row["name"],
  300. "title_tks": rag_tokenizer.tokenize(row["name"])
  301. }
  302. res = []
  303. tk_count = 0
  304. for content, vctr in chunks[original_length:]:
  305. d = copy.deepcopy(doc)
  306. md5 = hashlib.md5()
  307. md5.update((content + str(d["doc_id"])).encode("utf-8"))
  308. d["id"] = md5.hexdigest()
  309. d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
  310. d["create_timestamp_flt"] = datetime.now().timestamp()
  311. d[vctr_nm] = vctr.tolist()
  312. d["content_with_weight"] = content
  313. d["content_ltks"] = rag_tokenizer.tokenize(content)
  314. d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
  315. res.append(d)
  316. tk_count += num_tokens_from_string(content)
  317. return res, tk_count, vector_size
  318. def main():
  319. rows = collect()
  320. if len(rows) == 0:
  321. return
  322. for _, r in rows.iterrows():
  323. callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
  324. try:
  325. embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"])
  326. except Exception as e:
  327. callback(-1, msg=str(e))
  328. logging.exception("LLMBundle got exception")
  329. continue
  330. if r.get("task_type", "") == "raptor":
  331. try:
  332. chat_mdl = LLMBundle(r["tenant_id"], LLMType.CHAT, llm_name=r["llm_id"], lang=r["language"])
  333. cks, tk_count, vector_size = run_raptor(r, chat_mdl, embd_mdl, callback)
  334. except Exception as e:
  335. callback(-1, msg=str(e))
  336. logging.exception("run_raptor got exception")
  337. continue
  338. else:
  339. st = timer()
  340. cks = build(r)
  341. logging.info("Build chunks({}): {}".format(r["name"], timer() - st))
  342. if cks is None:
  343. continue
  344. if not cks:
  345. callback(1., "No chunk! Done!")
  346. continue
  347. # TODO: exception handler
  348. ## set_progress(r["did"], -1, "ERROR: ")
  349. callback(
  350. msg="Finished slicing files ({} chunks in {:.2f}s). Start to embedding the content.".format(len(cks),
  351. timer() - st)
  352. )
  353. st = timer()
  354. try:
  355. tk_count, vector_size = embedding(cks, embd_mdl, r["parser_config"], callback)
  356. except Exception as e:
  357. callback(-1, "Embedding error:{}".format(str(e)))
  358. logging.exception("run_rembedding got exception")
  359. tk_count = 0
  360. logging.info("Embedding elapsed({}): {:.2f}".format(r["name"], timer() - st))
  361. callback(msg="Finished embedding (in {:.2f}s)! Start to build index!".format(timer() - st))
  362. # logging.info(f"task_executor init_kb index {search.index_name(r["tenant_id"])} embd_mdl {embd_mdl.llm_name} vector length {vector_size}")
  363. init_kb(r, vector_size)
  364. chunk_count = len(set([c["id"] for c in cks]))
  365. st = timer()
  366. es_r = ""
  367. es_bulk_size = 4
  368. for b in range(0, len(cks), es_bulk_size):
  369. es_r = settings.docStoreConn.insert(cks[b:b + es_bulk_size], search.index_name(r["tenant_id"]), r["kb_id"])
  370. if b % 128 == 0:
  371. callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")
  372. logging.info("Indexing elapsed({}): {:.2f}".format(r["name"], timer() - st))
  373. if es_r:
  374. callback(-1, "Insert chunk error, detail info please check log file. Please also check ES status!")
  375. settings.docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
  376. logging.error('Insert chunk error: ' + str(es_r))
  377. else:
  378. if TaskService.do_cancel(r["id"]):
  379. settings.docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
  380. continue
  381. callback(msg="Indexing elapsed in {:.2f}s.".format(timer() - st))
  382. callback(1., "Done!")
  383. DocumentService.increment_chunk_num(
  384. r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
  385. logging.info(
  386. "Chunk doc({}), token({}), chunks({}), elapsed:{:.2f}".format(
  387. r["id"], tk_count, len(cks), timer() - st))
  388. def report_status():
  389. global CONSUMER_NAME, BOOT_AT, DONE_TASKS, RETRY_TASKS, PENDING_TASKS, HEAD_CREATED_AT, HEAD_DETAIL
  390. REDIS_CONN.sadd("TASKEXE", CONSUMER_NAME)
  391. while True:
  392. try:
  393. now = datetime.now()
  394. PENDING_TASKS = REDIS_CONN.queue_length(SVR_QUEUE_NAME)
  395. if PENDING_TASKS > 0:
  396. head_info = REDIS_CONN.queue_head(SVR_QUEUE_NAME)
  397. if head_info is not None:
  398. seconds = int(head_info[0].split("-")[0]) / 1000
  399. HEAD_CREATED_AT = datetime.fromtimestamp(seconds).isoformat()
  400. HEAD_DETAIL = head_info[1]
  401. heartbeat = json.dumps({
  402. "name": CONSUMER_NAME,
  403. "now": now.isoformat(),
  404. "boot_at": BOOT_AT,
  405. "done": DONE_TASKS,
  406. "retry": RETRY_TASKS,
  407. "pending": PENDING_TASKS,
  408. "head_created_at": HEAD_CREATED_AT,
  409. "head_detail": HEAD_DETAIL,
  410. })
  411. REDIS_CONN.zadd(CONSUMER_NAME, heartbeat, now.timestamp())
  412. logging.info(f"{CONSUMER_NAME} reported heartbeat: {heartbeat}")
  413. expired = REDIS_CONN.zcount(CONSUMER_NAME, 0, now.timestamp() - 60 * 30)
  414. if expired > 0:
  415. REDIS_CONN.zpopmin(CONSUMER_NAME, expired)
  416. except Exception:
  417. logging.exception("report_status got exception")
  418. time.sleep(30)
  419. if __name__ == "__main__":
  420. background_thread = threading.Thread(target=report_status)
  421. background_thread.daemon = True
  422. background_thread.start()
  423. while True:
  424. main()
  425. if PAYLOAD:
  426. PAYLOAD.ack()
  427. PAYLOAD = None