You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

rerank_model.py 14KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import re
  17. import threading
  18. from urllib.parse import urljoin
  19. import requests
  20. from huggingface_hub import snapshot_download
  21. import os
  22. from abc import ABC
  23. import numpy as np
  24. from api import settings
  25. from api.utils.file_utils import get_home_cache_dir
  26. from rag.utils import num_tokens_from_string, truncate
  27. import json
  28. def sigmoid(x):
  29. return 1 / (1 + np.exp(-x))
  30. class Base(ABC):
  31. def __init__(self, key, model_name):
  32. pass
  33. def similarity(self, query: str, texts: list):
  34. raise NotImplementedError("Please implement encode method!")
  35. class DefaultRerank(Base):
  36. _model = None
  37. _model_lock = threading.Lock()
  38. def __init__(self, key, model_name, **kwargs):
  39. """
  40. If you have trouble downloading HuggingFace models, -_^ this might help!!
  41. For Linux:
  42. export HF_ENDPOINT=https://hf-mirror.com
  43. For Windows:
  44. Good luck
  45. ^_-
  46. """
  47. if not settings.LIGHTEN and not DefaultRerank._model:
  48. import torch
  49. from FlagEmbedding import FlagReranker
  50. with DefaultRerank._model_lock:
  51. if not DefaultRerank._model:
  52. try:
  53. DefaultRerank._model = FlagReranker(
  54. os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
  55. use_fp16=torch.cuda.is_available())
  56. except Exception:
  57. model_dir = snapshot_download(repo_id=model_name,
  58. local_dir=os.path.join(get_home_cache_dir(),
  59. re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
  60. local_dir_use_symlinks=False)
  61. DefaultRerank._model = FlagReranker(model_dir, use_fp16=torch.cuda.is_available())
  62. self._model = DefaultRerank._model
  63. def similarity(self, query: str, texts: list):
  64. pairs = [(query, truncate(t, 2048)) for t in texts]
  65. token_count = 0
  66. for _, t in pairs:
  67. token_count += num_tokens_from_string(t)
  68. batch_size = 4096
  69. res = []
  70. for i in range(0, len(pairs), batch_size):
  71. scores = self._model.compute_score(pairs[i:i + batch_size], max_length=2048)
  72. scores = sigmoid(np.array(scores)).tolist()
  73. if isinstance(scores, float):
  74. res.append(scores)
  75. else:
  76. res.extend(scores)
  77. return np.array(res), token_count
  78. class JinaRerank(Base):
  79. def __init__(self, key, model_name="jina-reranker-v1-base-en",
  80. base_url="https://api.jina.ai/v1/rerank"):
  81. self.base_url = "https://api.jina.ai/v1/rerank"
  82. self.headers = {
  83. "Content-Type": "application/json",
  84. "Authorization": f"Bearer {key}"
  85. }
  86. self.model_name = model_name
  87. def similarity(self, query: str, texts: list):
  88. texts = [truncate(t, 8196) for t in texts]
  89. data = {
  90. "model": self.model_name,
  91. "query": query,
  92. "documents": texts,
  93. "top_n": len(texts)
  94. }
  95. res = requests.post(self.base_url, headers=self.headers, json=data).json()
  96. rank = np.zeros(len(texts), dtype=float)
  97. for d in res["results"]:
  98. rank[d["index"]] = d["relevance_score"]
  99. return rank, res["usage"]["total_tokens"]
  100. class YoudaoRerank(DefaultRerank):
  101. _model = None
  102. _model_lock = threading.Lock()
  103. def __init__(self, key=None, model_name="maidalun1020/bce-reranker-base_v1", **kwargs):
  104. if not settings.LIGHTEN and not YoudaoRerank._model:
  105. from BCEmbedding import RerankerModel
  106. with YoudaoRerank._model_lock:
  107. if not YoudaoRerank._model:
  108. try:
  109. logging.info("LOADING BCE...")
  110. YoudaoRerank._model = RerankerModel(model_name_or_path=os.path.join(
  111. get_home_cache_dir(),
  112. re.sub(r"^[a-zA-Z0-9]+/", "", model_name)))
  113. except Exception:
  114. YoudaoRerank._model = RerankerModel(
  115. model_name_or_path=model_name.replace(
  116. "maidalun1020", "InfiniFlow"))
  117. self._model = YoudaoRerank._model
  118. def similarity(self, query: str, texts: list):
  119. pairs = [(query, truncate(t, self._model.max_length)) for t in texts]
  120. token_count = 0
  121. for _, t in pairs:
  122. token_count += num_tokens_from_string(t)
  123. batch_size = 8
  124. res = []
  125. for i in range(0, len(pairs), batch_size):
  126. scores = self._model.compute_score(pairs[i:i + batch_size], max_length=self._model.max_length)
  127. scores = sigmoid(np.array(scores)).tolist()
  128. if isinstance(scores, float):
  129. res.append(scores)
  130. else:
  131. res.extend(scores)
  132. return np.array(res), token_count
  133. class XInferenceRerank(Base):
  134. def __init__(self, key="xxxxxxx", model_name="", base_url=""):
  135. if base_url.find("/v1") == -1:
  136. base_url = urljoin(base_url, "/v1/rerank")
  137. self.model_name = model_name
  138. self.base_url = base_url
  139. self.headers = {
  140. "Content-Type": "application/json",
  141. "accept": "application/json",
  142. "Authorization": f"Bearer {key}"
  143. }
  144. def similarity(self, query: str, texts: list):
  145. if len(texts) == 0:
  146. return np.array([]), 0
  147. data = {
  148. "model": self.model_name,
  149. "query": query,
  150. "return_documents": "true",
  151. "return_len": "true",
  152. "documents": texts
  153. }
  154. res = requests.post(self.base_url, headers=self.headers, json=data).json()
  155. rank = np.zeros(len(texts), dtype=float)
  156. for d in res["results"]:
  157. rank[d["index"]] = d["relevance_score"]
  158. return rank, res["meta"]["tokens"]["input_tokens"] + res["meta"]["tokens"]["output_tokens"]
  159. class LocalAIRerank(Base):
  160. def __init__(self, key, model_name, base_url):
  161. pass
  162. def similarity(self, query: str, texts: list):
  163. raise NotImplementedError("The LocalAIRerank has not been implement")
  164. class NvidiaRerank(Base):
  165. def __init__(
  166. self, key, model_name, base_url="https://ai.api.nvidia.com/v1/retrieval/nvidia/"
  167. ):
  168. if not base_url:
  169. base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/"
  170. self.model_name = model_name
  171. if self.model_name == "nvidia/nv-rerankqa-mistral-4b-v3":
  172. self.base_url = os.path.join(
  173. base_url, "nv-rerankqa-mistral-4b-v3", "reranking"
  174. )
  175. if self.model_name == "nvidia/rerank-qa-mistral-4b":
  176. self.base_url = os.path.join(base_url, "reranking")
  177. self.model_name = "nv-rerank-qa-mistral-4b:1"
  178. self.headers = {
  179. "accept": "application/json",
  180. "Content-Type": "application/json",
  181. "Authorization": f"Bearer {key}",
  182. }
  183. def similarity(self, query: str, texts: list):
  184. token_count = num_tokens_from_string(query) + sum(
  185. [num_tokens_from_string(t) for t in texts]
  186. )
  187. data = {
  188. "model": self.model_name,
  189. "query": {"text": query},
  190. "passages": [{"text": text} for text in texts],
  191. "truncate": "END",
  192. "top_n": len(texts),
  193. }
  194. res = requests.post(self.base_url, headers=self.headers, json=data).json()
  195. rank = np.zeros(len(texts), dtype=float)
  196. for d in res["rankings"]:
  197. rank[d["index"]] = d["logit"]
  198. return rank, token_count
  199. class LmStudioRerank(Base):
  200. def __init__(self, key, model_name, base_url):
  201. pass
  202. def similarity(self, query: str, texts: list):
  203. raise NotImplementedError("The LmStudioRerank has not been implement")
  204. class OpenAI_APIRerank(Base):
  205. def __init__(self, key, model_name, base_url):
  206. if base_url.find("/rerank") == -1:
  207. self.base_url = urljoin(base_url, "/rerank")
  208. else:
  209. self.base_url = base_url
  210. self.headers = {
  211. "Content-Type": "application/json",
  212. "Authorization": f"Bearer {key}"
  213. }
  214. self.model_name = model_name
  215. def similarity(self, query: str, texts: list):
  216. # noway to config Ragflow , use fix setting
  217. texts = [truncate(t, 500) for t in texts]
  218. data = {
  219. "model": self.model_name,
  220. "query": query,
  221. "documents": texts,
  222. "top_n": len(texts),
  223. }
  224. token_count = 0
  225. for t in texts:
  226. token_count += num_tokens_from_string(t)
  227. res = requests.post(self.base_url, headers=self.headers, json=data).json()
  228. rank = np.zeros(len(texts), dtype=float)
  229. if 'results' not in res:
  230. raise ValueError("response not contains results\n" + str(res))
  231. for d in res["results"]:
  232. rank[d["index"]] = d["relevance_score"]
  233. # Normalize the rank values to the range 0 to 1
  234. min_rank = np.min(rank)
  235. max_rank = np.max(rank)
  236. # Avoid division by zero if all ranks are identical
  237. if max_rank - min_rank != 0:
  238. rank = (rank - min_rank) / (max_rank - min_rank)
  239. else:
  240. rank = np.zeros_like(rank)
  241. return rank, token_count
  242. class CoHereRerank(Base):
  243. def __init__(self, key, model_name, base_url=None):
  244. from cohere import Client
  245. self.client = Client(api_key=key)
  246. self.model_name = model_name
  247. def similarity(self, query: str, texts: list):
  248. token_count = num_tokens_from_string(query) + sum(
  249. [num_tokens_from_string(t) for t in texts]
  250. )
  251. res = self.client.rerank(
  252. model=self.model_name,
  253. query=query,
  254. documents=texts,
  255. top_n=len(texts),
  256. return_documents=False,
  257. )
  258. rank = np.zeros(len(texts), dtype=float)
  259. for d in res.results:
  260. rank[d.index] = d.relevance_score
  261. return rank, token_count
  262. class TogetherAIRerank(Base):
  263. def __init__(self, key, model_name, base_url):
  264. pass
  265. def similarity(self, query: str, texts: list):
  266. raise NotImplementedError("The api has not been implement")
  267. class SILICONFLOWRerank(Base):
  268. def __init__(
  269. self, key, model_name, base_url="https://api.siliconflow.cn/v1/rerank"
  270. ):
  271. if not base_url:
  272. base_url = "https://api.siliconflow.cn/v1/rerank"
  273. self.model_name = model_name
  274. self.base_url = base_url
  275. self.headers = {
  276. "accept": "application/json",
  277. "content-type": "application/json",
  278. "authorization": f"Bearer {key}",
  279. }
  280. def similarity(self, query: str, texts: list):
  281. payload = {
  282. "model": self.model_name,
  283. "query": query,
  284. "documents": texts,
  285. "top_n": len(texts),
  286. "return_documents": False,
  287. "max_chunks_per_doc": 1024,
  288. "overlap_tokens": 80,
  289. }
  290. response = requests.post(
  291. self.base_url, json=payload, headers=self.headers
  292. ).json()
  293. rank = np.zeros(len(texts), dtype=float)
  294. if "results" not in response:
  295. return rank, 0
  296. for d in response["results"]:
  297. rank[d["index"]] = d["relevance_score"]
  298. return (
  299. rank,
  300. response["meta"]["tokens"]["input_tokens"] + response["meta"]["tokens"]["output_tokens"],
  301. )
  302. class BaiduYiyanRerank(Base):
  303. def __init__(self, key, model_name, base_url=None):
  304. from qianfan.resources import Reranker
  305. key = json.loads(key)
  306. ak = key.get("yiyan_ak", "")
  307. sk = key.get("yiyan_sk", "")
  308. self.client = Reranker(ak=ak, sk=sk)
  309. self.model_name = model_name
  310. def similarity(self, query: str, texts: list):
  311. res = self.client.do(
  312. model=self.model_name,
  313. query=query,
  314. documents=texts,
  315. top_n=len(texts),
  316. ).body
  317. rank = np.zeros(len(texts), dtype=float)
  318. for d in res["results"]:
  319. rank[d["index"]] = d["relevance_score"]
  320. return rank, res["usage"]["total_tokens"]
  321. class VoyageRerank(Base):
  322. def __init__(self, key, model_name, base_url=None):
  323. import voyageai
  324. self.client = voyageai.Client(api_key=key)
  325. self.model_name = model_name
  326. def similarity(self, query: str, texts: list):
  327. res = self.client.rerank(
  328. query=query, documents=texts, model=self.model_name, top_k=len(texts)
  329. )
  330. rank = np.zeros(len(texts), dtype=float)
  331. for r in res.results:
  332. rank[r.index] = r.relevance_score
  333. return rank, res.total_tokens
  334. class QWenRerank(Base):
  335. def __init__(self, key, model_name='gte-rerank', base_url=None, **kwargs):
  336. import dashscope
  337. self.api_key = key
  338. self.model_name = dashscope.TextReRank.Models.gte_rerank if model_name is None else model_name
  339. def similarity(self, query: str, texts: list):
  340. import dashscope
  341. from http import HTTPStatus
  342. resp = dashscope.TextReRank.call(
  343. api_key=self.api_key,
  344. model=self.model_name,
  345. query=query,
  346. documents=texts,
  347. top_n=len(texts),
  348. return_documents=False
  349. )
  350. rank = np.zeros(len(texts), dtype=float)
  351. if resp.status_code == HTTPStatus.OK:
  352. for r in resp.output.results:
  353. rank[r.index] = r.relevance_score
  354. return rank, resp.usage.total_tokens
  355. return rank, 0