Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

llm_app.py 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. import json
  18. from flask import request
  19. from flask_login import login_required, current_user
  20. from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
  21. from api import settings
  22. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  23. from api.db import StatusEnum, LLMType
  24. from api.db.db_models import TenantLLM
  25. from api.utils.api_utils import get_json_result
  26. from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
  27. import requests
  28. @manager.route('/factories', methods=['GET'])
  29. @login_required
  30. def factories():
  31. try:
  32. fac = LLMFactoriesService.get_all()
  33. fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
  34. llms = LLMService.get_all()
  35. mdl_types = {}
  36. for m in llms:
  37. if m.status != StatusEnum.VALID.value:
  38. continue
  39. if m.fid not in mdl_types:
  40. mdl_types[m.fid] = set([])
  41. mdl_types[m.fid].add(m.model_type)
  42. for f in fac:
  43. f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK,
  44. LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
  45. return get_json_result(data=fac)
  46. except Exception as e:
  47. return server_error_response(e)
  48. @manager.route('/set_api_key', methods=['POST'])
  49. @login_required
  50. @validate_request("llm_factory", "api_key")
  51. def set_api_key():
  52. req = request.json
  53. # test if api key works
  54. chat_passed, embd_passed, rerank_passed = False, False, False
  55. factory = req["llm_factory"]
  56. msg = ""
  57. for llm in LLMService.query(fid=factory):
  58. if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
  59. mdl = EmbeddingModel[factory](
  60. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  61. try:
  62. arr, tc = mdl.encode(["Test if the api key is available"])
  63. if len(arr[0]) == 0:
  64. raise Exception("Fail")
  65. embd_passed = True
  66. except Exception as e:
  67. msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
  68. elif not chat_passed and llm.model_type == LLMType.CHAT.value:
  69. mdl = ChatModel[factory](
  70. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  71. try:
  72. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
  73. {"temperature": 0.9,'max_tokens':50})
  74. if m.find("**ERROR**") >=0:
  75. raise Exception(m)
  76. chat_passed = True
  77. except Exception as e:
  78. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  79. e)
  80. elif not rerank_passed and llm.model_type == LLMType.RERANK:
  81. mdl = RerankModel[factory](
  82. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  83. try:
  84. arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
  85. if len(arr) == 0 or tc == 0:
  86. raise Exception("Fail")
  87. rerank_passed = True
  88. logging.debug(f'passed model rerank {llm.llm_name}')
  89. except Exception as e:
  90. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  91. e)
  92. if any([embd_passed, chat_passed, rerank_passed]):
  93. msg = ''
  94. break
  95. if msg:
  96. return get_data_error_result(message=msg)
  97. llm_config = {
  98. "api_key": req["api_key"],
  99. "api_base": req.get("base_url", "")
  100. }
  101. for n in ["model_type", "llm_name"]:
  102. if n in req:
  103. llm_config[n] = req[n]
  104. for llm in LLMService.query(fid=factory):
  105. if not TenantLLMService.filter_update(
  106. [TenantLLM.tenant_id == current_user.id,
  107. TenantLLM.llm_factory == factory,
  108. TenantLLM.llm_name == llm.llm_name],
  109. llm_config):
  110. TenantLLMService.save(
  111. tenant_id=current_user.id,
  112. llm_factory=factory,
  113. llm_name=llm.llm_name,
  114. model_type=llm.model_type,
  115. api_key=llm_config["api_key"],
  116. api_base=llm_config["api_base"]
  117. )
  118. return get_json_result(data=True)
  119. @manager.route('/add_llm', methods=['POST'])
  120. @login_required
  121. @validate_request("llm_factory")
  122. def add_llm():
  123. req = request.json
  124. factory = req["llm_factory"]
  125. def apikey_json(keys):
  126. nonlocal req
  127. return json.dumps({k: req.get(k, "") for k in keys})
  128. if factory == "VolcEngine":
  129. # For VolcEngine, due to its special authentication method
  130. # Assemble ark_api_key endpoint_id into api_key
  131. llm_name = req["llm_name"]
  132. api_key = apikey_json(["ark_api_key", "endpoint_id"])
  133. elif factory == "Tencent Hunyuan":
  134. req["api_key"] = apikey_json(["hunyuan_sid", "hunyuan_sk"])
  135. return set_api_key()
  136. elif factory == "Tencent Cloud":
  137. req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
  138. elif factory == "Bedrock":
  139. # For Bedrock, due to its special authentication method
  140. # Assemble bedrock_ak, bedrock_sk, bedrock_region
  141. llm_name = req["llm_name"]
  142. api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
  143. elif factory == "LocalAI":
  144. llm_name = req["llm_name"]+"___LocalAI"
  145. api_key = "xxxxxxxxxxxxxxx"
  146. elif factory == "HuggingFace":
  147. llm_name = req["llm_name"]+"___HuggingFace"
  148. api_key = "xxxxxxxxxxxxxxx"
  149. elif factory == "OpenAI-API-Compatible":
  150. llm_name = req["llm_name"]+"___OpenAI-API"
  151. api_key = req.get("api_key","xxxxxxxxxxxxxxx")
  152. elif factory =="XunFei Spark":
  153. llm_name = req["llm_name"]
  154. if req["model_type"] == "chat":
  155. api_key = req.get("spark_api_password", "xxxxxxxxxxxxxxx")
  156. elif req["model_type"] == "tts":
  157. api_key = apikey_json(["spark_app_id", "spark_api_secret","spark_api_key"])
  158. elif factory == "BaiduYiyan":
  159. llm_name = req["llm_name"]
  160. api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
  161. elif factory == "Fish Audio":
  162. llm_name = req["llm_name"]
  163. api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
  164. elif factory == "Google Cloud":
  165. llm_name = req["llm_name"]
  166. api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
  167. elif factory == "Azure-OpenAI":
  168. llm_name = req["llm_name"]
  169. api_key = apikey_json(["api_key", "api_version"])
  170. else:
  171. llm_name = req["llm_name"]
  172. api_key = req.get("api_key", "xxxxxxxxxxxxxxx")
  173. llm = {
  174. "tenant_id": current_user.id,
  175. "llm_factory": factory,
  176. "model_type": req["model_type"],
  177. "llm_name": llm_name,
  178. "api_base": req.get("api_base", ""),
  179. "api_key": api_key
  180. }
  181. msg = ""
  182. if llm["model_type"] == LLMType.EMBEDDING.value:
  183. mdl = EmbeddingModel[factory](
  184. key=llm['api_key'],
  185. model_name=llm["llm_name"],
  186. base_url=llm["api_base"])
  187. try:
  188. arr, tc = mdl.encode(["Test if the api key is available"])
  189. if len(arr[0]) == 0 or tc == 0:
  190. raise Exception("Fail")
  191. except Exception as e:
  192. msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
  193. elif llm["model_type"] == LLMType.CHAT.value:
  194. mdl = ChatModel[factory](
  195. key=llm['api_key'],
  196. model_name=llm["llm_name"],
  197. base_url=llm["api_base"]
  198. )
  199. try:
  200. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
  201. "temperature": 0.9})
  202. if not tc:
  203. raise Exception(m)
  204. except Exception as e:
  205. msg += f"\nFail to access model({llm['llm_name']})." + str(
  206. e)
  207. elif llm["model_type"] == LLMType.RERANK:
  208. mdl = RerankModel[factory](
  209. key=llm["api_key"],
  210. model_name=llm["llm_name"],
  211. base_url=llm["api_base"]
  212. )
  213. try:
  214. arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!"])
  215. if len(arr) == 0 or tc == 0:
  216. raise Exception("Not known.")
  217. except Exception as e:
  218. msg += f"\nFail to access model({llm['llm_name']})." + str(
  219. e)
  220. elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
  221. mdl = CvModel[factory](
  222. key=llm["api_key"],
  223. model_name=llm["llm_name"],
  224. base_url=llm["api_base"]
  225. )
  226. try:
  227. img_url = (
  228. "https://upload.wikimedia.org/wikipedia/comm"
  229. "ons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/256"
  230. "0px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
  231. )
  232. res = requests.get(img_url)
  233. if res.status_code == 200:
  234. m, tc = mdl.describe(res.content)
  235. if not tc:
  236. raise Exception(m)
  237. else:
  238. pass
  239. except Exception as e:
  240. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  241. elif llm["model_type"] == LLMType.TTS:
  242. mdl = TTSModel[factory](
  243. key=llm["api_key"], model_name=llm["llm_name"], base_url=llm["api_base"]
  244. )
  245. try:
  246. for resp in mdl.tts("Hello~ Ragflower!"):
  247. pass
  248. except RuntimeError as e:
  249. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  250. else:
  251. # TODO: check other type of models
  252. pass
  253. if msg:
  254. return get_data_error_result(message=msg)
  255. if not TenantLLMService.filter_update(
  256. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm["llm_name"]], llm):
  257. TenantLLMService.save(**llm)
  258. return get_json_result(data=True)
  259. @manager.route('/delete_llm', methods=['POST'])
  260. @login_required
  261. @validate_request("llm_factory", "llm_name")
  262. def delete_llm():
  263. req = request.json
  264. TenantLLMService.filter_delete(
  265. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]])
  266. return get_json_result(data=True)
  267. @manager.route('/delete_factory', methods=['POST'])
  268. @login_required
  269. @validate_request("llm_factory")
  270. def delete_factory():
  271. req = request.json
  272. TenantLLMService.filter_delete(
  273. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
  274. return get_json_result(data=True)
  275. @manager.route('/my_llms', methods=['GET'])
  276. @login_required
  277. def my_llms():
  278. try:
  279. res = {}
  280. for o in TenantLLMService.get_my_llms(current_user.id):
  281. if o["llm_factory"] not in res:
  282. res[o["llm_factory"]] = {
  283. "tags": o["tags"],
  284. "llm": []
  285. }
  286. res[o["llm_factory"]]["llm"].append({
  287. "type": o["model_type"],
  288. "name": o["llm_name"],
  289. "used_token": o["used_tokens"]
  290. })
  291. return get_json_result(data=res)
  292. except Exception as e:
  293. return server_error_response(e)
  294. @manager.route('/list', methods=['GET'])
  295. @login_required
  296. def list_app():
  297. self_deploied = ["Youdao","FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio"]
  298. weighted = ["Youdao","FastEmbed", "BAAI"] if settings.LIGHTEN != 0 else []
  299. model_type = request.args.get("model_type")
  300. try:
  301. objs = TenantLLMService.query(tenant_id=current_user.id)
  302. facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
  303. llms = LLMService.get_all()
  304. llms = [m.to_dict()
  305. for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted]
  306. for m in llms:
  307. m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deploied
  308. llm_set = set([m["llm_name"]+"@"+m["fid"] for m in llms])
  309. for o in objs:
  310. if not o.api_key:continue
  311. if o.llm_name+"@"+o.llm_factory in llm_set:continue
  312. llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
  313. res = {}
  314. for m in llms:
  315. if model_type and m["model_type"].find(model_type)<0:
  316. continue
  317. if m["fid"] not in res:
  318. res[m["fid"]] = []
  319. res[m["fid"]].append(m)
  320. return get_json_result(data=res)
  321. except Exception as e:
  322. return server_error_response(e)