| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - 
 - from typing import List
 - 
 - import requests
 - 
 - from .modules.chat import Chat
 - from .modules.chunk import Chunk
 - from .modules.dataset import DataSet
 - from .modules.document import Document
 - 
 - 
 - class RAGFlow:
 -     def __init__(self, api_key, base_url, version='v1'):
 -         """
 -         api_url: http://<host_address>/api/v1
 -         """
 -         self.user_key = api_key
 -         self.api_url = f"{base_url}/api/{version}"
 -         self.authorization_header = {"Authorization": "{} {}".format("Bearer", self.user_key)}
 - 
 -     def post(self, path, json=None, stream=False, files=None):
 -         res = requests.post(url=self.api_url + path, json=json, headers=self.authorization_header, stream=stream,files=files)
 -         return res
 - 
 -     def get(self, path, params=None, json=None):
 -         res = requests.get(url=self.api_url + path, params=params, headers=self.authorization_header,json=json)
 -         return res
 - 
 -     def delete(self, path, json):
 -         res = requests.delete(url=self.api_url + path, json=json, headers=self.authorization_header)
 -         return res
 - 
 -     def put(self, path, json):
 -         res = requests.put(url=self.api_url + path, json= json,headers=self.authorization_header)
 -         return res
 - 
 -     def create_dataset(self, name: str, avatar: str = "", description: str = "", language: str = "English",
 -                        permission: str = "me",chunk_method: str = "naive",
 -                        parser_config: DataSet.ParserConfig = None) -> DataSet:
 -         if parser_config:
 -             parser_config = parser_config.to_json()
 -         res = self.post("/datasets",
 -                         {"name": name, "avatar": avatar, "description": description, "language": language,
 -                          "permission": permission, "chunk_method": chunk_method,
 -                          "parser_config": parser_config
 -                          }
 -                         )
 -         res = res.json()
 -         if res.get("code") == 0:
 -             return DataSet(self, res["data"])
 -         raise Exception(res["message"])
 - 
 -     def delete_datasets(self, ids: List[str] = None):
 -         res = self.delete("/datasets",{"ids": ids})
 -         res=res.json()
 -         if res.get("code") != 0:
 -             raise Exception(res["message"])
 - 
 -     def get_dataset(self,name: str):
 -         _list = self.list_datasets(name=name)
 -         if len(_list) > 0:
 -             return _list[0]
 -         raise Exception("Dataset %s not found" % name)
 - 
 -     def list_datasets(self, page: int = 1, page_size: int = 1024, orderby: str = "create_time", desc: bool = True,
 -                       id: str = None, name: str = None) -> \
 -             List[DataSet]:
 -         res = self.get("/datasets",
 -                        {"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id, "name": name})
 -         res = res.json()
 -         result_list = []
 -         if res.get("code") == 0:
 -             for data in res['data']:
 -                 result_list.append(DataSet(self, data))
 -             return result_list
 -         raise Exception(res["message"])
 - 
 -     def create_chat(self, name: str, avatar: str = "", dataset_ids: List[str] = [],
 -                          llm: Chat.LLM = None, prompt: Chat.Prompt = None) -> Chat:
 -         dataset_list = []
 -         for id in dataset_ids:
 -             dataset_list.append(id)
 - 
 -         if llm is None:
 -             llm = Chat.LLM(self, {"model_name": None,
 -                                        "temperature": 0.1,
 -                                        "top_p": 0.3,
 -                                        "presence_penalty": 0.4,
 -                                        "frequency_penalty": 0.7,
 -                                        "max_tokens": 512, })
 -         if prompt is None:
 -             prompt = Chat.Prompt(self, {"similarity_threshold": 0.2,
 -                                              "keywords_similarity_weight": 0.7,
 -                                              "top_n": 8,
 -                                              "variables": [{
 -                                                  "key": "knowledge",
 -                                                  "optional": True
 -                                              }], "rerank_model": "",
 -                                              "empty_response": None,
 -                                              "opener": None,
 -                                              "show_quote": True,
 -                                              "prompt": None})
 -             if prompt.opener is None:
 -                 prompt.opener = "Hi! I'm your assistant, what can I do for you?"
 -             if prompt.prompt is None:
 -                 prompt.prompt = (
 -                     "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. "
 -                     "Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, "
 -                     "your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' "
 -                     "Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base."
 -                 )
 - 
 -         temp_dict = {"name": name,
 -                      "avatar": avatar,
 -                      "dataset_ids": dataset_list,
 -                      "llm": llm.to_json(),
 -                      "prompt": prompt.to_json()}
 -         res = self.post("/chats", temp_dict)
 -         res = res.json()
 -         if res.get("code") == 0:
 -             return Chat(self, res["data"])
 -         raise Exception(res["message"])
 - 
 -     def delete_chats(self,ids: List[str] = None) -> bool:
 -         res = self.delete('/chats',
 -                       {"ids":ids})
 -         res = res.json()
 -         if res.get("code") != 0:
 -             raise Exception(res["message"])
 - 
 -     def list_chats(self, page: int = 1, page_size: int = 1024, orderby: str = "create_time", desc: bool = True,
 -                       id: str = None, name: str = None) -> List[Chat]:
 -         res = self.get("/chats",{"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id, "name": name})
 -         res = res.json()
 -         result_list = []
 -         if res.get("code") == 0:
 -             for data in res['data']:
 -                 result_list.append(Chat(self, data))
 -             return result_list
 -         raise Exception(res["message"])
 - 
 - 
 -     def retrieve(self, dataset_ids, document_ids=None, question="", page=1, page_size=1024, similarity_threshold=0.2, vector_similarity_weight=0.3, top_k=1024, rerank_id:str=None, keyword:bool=False, ):
 -             if document_ids is None:
 -                 document_ids = []
 -             data_json ={
 -                 "offset": page,
 -                 "limit": page_size,
 -                 "similarity_threshold": similarity_threshold,
 -                 "vector_similarity_weight": vector_similarity_weight,
 -                 "top_k": top_k,
 -                 "rerank_id": rerank_id,
 -                 "keyword": keyword,
 -                 "question": question,
 -                 "dataset_ids": dataset_ids,
 -                 "documents": document_ids
 -             }
 -             # Send a POST request to the backend service (using requests library as an example, actual implementation may vary)
 -             res = self.post(f'/retrieval',json=data_json)
 -             res = res.json()
 -             if res.get("code") ==0:
 -                 chunks=[]
 -                 for chunk_data in res["data"].get("chunks"):
 -                     chunk=Chunk(self,chunk_data)
 -                     chunks.append(chunk)
 -                 return chunks
 -             raise Exception(res.get("message"))
 
 
  |