| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import base64
- import io
- import json
- import os
- from abc import ABC
- from io import BytesIO
- from urllib.parse import urljoin
-
- import requests
- from ollama import Client
- from openai import OpenAI
- from openai.lib.azure import AzureOpenAI
- from PIL import Image
- from zhipuai import ZhipuAI
-
- from api.utils import get_uuid
- from api.utils.file_utils import get_project_base_directory
- from rag.nlp import is_english
- from rag.prompts import vision_llm_describe_prompt
- from rag.utils import num_tokens_from_string
-
-
- class Base(ABC):
- def __init__(self, key, model_name):
- pass
-
- def describe(self, image):
- raise NotImplementedError("Please implement encode method!")
-
- def describe_with_prompt(self, image, prompt=None):
- raise NotImplementedError("Please implement encode method!")
-
- def chat(self, system, history, gen_conf, image=""):
- if system:
- history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
- try:
- for his in history:
- if his["role"] == "user":
- his["content"] = self.chat_prompt(his["content"], image)
-
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- temperature=gen_conf.get("temperature", 0.3),
- top_p=gen_conf.get("top_p", 0.7),
- )
- return response.choices[0].message.content.strip(), response.usage.total_tokens
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf, image=""):
- if system:
- history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
-
- ans = ""
- tk_count = 0
- try:
- for his in history:
- if his["role"] == "user":
- his["content"] = self.chat_prompt(his["content"], image)
-
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- temperature=gen_conf.get("temperature", 0.3),
- top_p=gen_conf.get("top_p", 0.7),
- stream=True,
- )
- for resp in response:
- if not resp.choices[0].delta.content:
- continue
- delta = resp.choices[0].delta.content
- ans += delta
- if resp.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- tk_count = resp.usage.total_tokens
- if resp.choices[0].finish_reason == "stop":
- tk_count = resp.usage.total_tokens
- yield ans
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield tk_count
-
- def image2base64(self, image):
- if isinstance(image, bytes):
- return base64.b64encode(image).decode("utf-8")
- if isinstance(image, BytesIO):
- return base64.b64encode(image.getvalue()).decode("utf-8")
- buffered = BytesIO()
- try:
- image.save(buffered, format="JPEG")
- except Exception:
- image.save(buffered, format="PNG")
- return base64.b64encode(buffered.getvalue()).decode("utf-8")
-
- def prompt(self, b64):
- return [
- {
- "role": "user",
- "content": [
- {
- "type": "image_url",
- "image_url": {"url": f"data:image/jpeg;base64,{b64}"},
- },
- {
- "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
- if self.lang.lower() == "chinese"
- else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
- },
- ],
- }
- ]
-
- def vision_llm_prompt(self, b64, prompt=None):
- return [
- {
- "role": "user",
- "content": [
- {
- "type": "image_url",
- "image_url": {"url": f"data:image/jpeg;base64,{b64}"},
- },
- {
- "type": "text",
- "text": prompt if prompt else vision_llm_describe_prompt(),
- },
- ],
- }
- ]
-
- def chat_prompt(self, text, b64):
- return [
- {
- "type": "image_url",
- "image_url": {
- "url": f"data:image/jpeg;base64,{b64}",
- },
- },
- {"type": "text", "text": text},
- ]
-
-
- class GptV4(Base):
- _FACTORY_NAME = "OpenAI"
-
- def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"):
- if not base_url:
- base_url = "https://api.openai.com/v1"
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
- self.lang = lang
-
- def describe(self, image):
- b64 = self.image2base64(image)
- prompt = self.prompt(b64)
- for i in range(len(prompt)):
- for c in prompt[i]["content"]:
- if "text" in c:
- c["type"] = "text"
-
- res = self.client.chat.completions.create(
- model=self.model_name,
- messages=prompt,
- )
- return res.choices[0].message.content.strip(), res.usage.total_tokens
-
- def describe_with_prompt(self, image, prompt=None):
- b64 = self.image2base64(image)
- vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
-
- res = self.client.chat.completions.create(
- model=self.model_name,
- messages=vision_prompt,
- )
- return res.choices[0].message.content.strip(), res.usage.total_tokens
-
-
- class AzureGptV4(Base):
- _FACTORY_NAME = "Azure-OpenAI"
-
- def __init__(self, key, model_name, lang="Chinese", **kwargs):
- api_key = json.loads(key).get("api_key", "")
- api_version = json.loads(key).get("api_version", "2024-02-01")
- self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
- self.model_name = model_name
- self.lang = lang
-
- def describe(self, image):
- b64 = self.image2base64(image)
- prompt = self.prompt(b64)
- for i in range(len(prompt)):
- for c in prompt[i]["content"]:
- if "text" in c:
- c["type"] = "text"
-
- res = self.client.chat.completions.create(model=self.model_name, messages=prompt)
- return res.choices[0].message.content.strip(), res.usage.total_tokens
-
- def describe_with_prompt(self, image, prompt=None):
- b64 = self.image2base64(image)
- vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
-
- res = self.client.chat.completions.create(
- model=self.model_name,
- messages=vision_prompt,
- )
- return res.choices[0].message.content.strip(), res.usage.total_tokens
-
-
- class xAICV(Base):
- _FACTORY_NAME = "xAI"
-
- def __init__(self, key, model_name="grok-3", base_url=None, **kwargs):
- if not base_url:
- base_url = "https://api.x.ai/v1"
- super().__init__(key, model_name, base_url=base_url, **kwargs)
- return
-
-
- class QWenCV(Base):
- _FACTORY_NAME = "Tongyi-Qianwen"
-
- def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", **kwargs):
- import dashscope
-
- dashscope.api_key = key
- self.model_name = model_name
- self.lang = lang
-
- def prompt(self, binary):
- # stupid as hell
- tmp_dir = get_project_base_directory("tmp")
- if not os.path.exists(tmp_dir):
- os.makedirs(tmp_dir, exist_ok=True)
- path = os.path.join(tmp_dir, "%s.jpg" % get_uuid())
- Image.open(io.BytesIO(binary)).save(path)
- return [
- {
- "role": "user",
- "content": [
- {"image": f"file://{path}"},
- {
- "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
- if self.lang.lower() == "chinese"
- else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
- },
- ],
- }
- ]
-
- def vision_llm_prompt(self, binary, prompt=None):
- # stupid as hell
- tmp_dir = get_project_base_directory("tmp")
- if not os.path.exists(tmp_dir):
- os.makedirs(tmp_dir, exist_ok=True)
- path = os.path.join(tmp_dir, "%s.jpg" % get_uuid())
- Image.open(io.BytesIO(binary)).save(path)
-
- return [
- {
- "role": "user",
- "content": [
- {"image": f"file://{path}"},
- {
- "text": prompt if prompt else vision_llm_describe_prompt(),
- },
- ],
- }
- ]
-
- def chat_prompt(self, text, b64):
- return [
- {"image": f"{b64}"},
- {"text": text},
- ]
-
- def describe(self, image):
- from http import HTTPStatus
-
- from dashscope import MultiModalConversation
-
- response = MultiModalConversation.call(model=self.model_name, messages=self.prompt(image))
- if response.status_code == HTTPStatus.OK:
- return response.output.choices[0]["message"]["content"][0]["text"], response.usage.output_tokens
- return response.message, 0
-
- def describe_with_prompt(self, image, prompt=None):
- from http import HTTPStatus
-
- from dashscope import MultiModalConversation
-
- vision_prompt = self.vision_llm_prompt(image, prompt) if prompt else self.vision_llm_prompt(image)
- response = MultiModalConversation.call(model=self.model_name, messages=vision_prompt)
- if response.status_code == HTTPStatus.OK:
- return response.output.choices[0]["message"]["content"][0]["text"], response.usage.output_tokens
- return response.message, 0
-
- def chat(self, system, history, gen_conf, image=""):
- from http import HTTPStatus
-
- from dashscope import MultiModalConversation
-
- if system:
- history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
-
- for his in history:
- if his["role"] == "user":
- his["content"] = self.chat_prompt(his["content"], image)
- response = MultiModalConversation.call(
- model=self.model_name,
- messages=history,
- temperature=gen_conf.get("temperature", 0.3),
- top_p=gen_conf.get("top_p", 0.7),
- )
-
- ans = ""
- tk_count = 0
- if response.status_code == HTTPStatus.OK:
- ans = response.output.choices[0]["message"]["content"]
- if isinstance(ans, list):
- ans = ans[0]["text"] if ans else ""
- tk_count += response.usage.total_tokens
- if response.output.choices[0].get("finish_reason", "") == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return ans, tk_count
-
- return "**ERROR**: " + response.message, tk_count
-
- def chat_streamly(self, system, history, gen_conf, image=""):
- from http import HTTPStatus
-
- from dashscope import MultiModalConversation
-
- if system:
- history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
-
- for his in history:
- if his["role"] == "user":
- his["content"] = self.chat_prompt(his["content"], image)
-
- ans = ""
- tk_count = 0
- try:
- response = MultiModalConversation.call(
- model=self.model_name,
- messages=history,
- temperature=gen_conf.get("temperature", 0.3),
- top_p=gen_conf.get("top_p", 0.7),
- stream=True,
- )
- for resp in response:
- if resp.status_code == HTTPStatus.OK:
- cnt = resp.output.choices[0]["message"]["content"]
- if isinstance(cnt, list):
- cnt = cnt[0]["text"] if ans else ""
- ans += cnt
- tk_count = resp.usage.total_tokens
- if resp.output.choices[0].get("finish_reason", "") == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- yield ans
- else:
- yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find("Access") < 0 else "Out of credit. Please set the API key in **settings > Model providers.**"
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield tk_count
-
-
- class Zhipu4V(Base):
- _FACTORY_NAME = "ZHIPU-AI"
-
- def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
- self.client = ZhipuAI(api_key=key)
- self.model_name = model_name
- self.lang = lang
-
- def describe(self, image):
- b64 = self.image2base64(image)
-
- prompt = self.prompt(b64)
- prompt[0]["content"][1]["type"] = "text"
-
- res = self.client.chat.completions.create(
- model=self.model_name,
- messages=prompt,
- )
- return res.choices[0].message.content.strip(), res.usage.total_tokens
-
- def describe_with_prompt(self, image, prompt=None):
- b64 = self.image2base64(image)
- vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
-
- res = self.client.chat.completions.create(model=self.model_name, messages=vision_prompt)
- return res.choices[0].message.content.strip(), res.usage.total_tokens
-
- def chat(self, system, history, gen_conf, image=""):
- if system:
- history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
- try:
- for his in history:
- if his["role"] == "user":
- his["content"] = self.chat_prompt(his["content"], image)
-
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- temperature=gen_conf.get("temperature", 0.3),
- top_p=gen_conf.get("top_p", 0.7),
- )
- return response.choices[0].message.content.strip(), response.usage.total_tokens
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf, image=""):
- if system:
- history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
-
- ans = ""
- tk_count = 0
- try:
- for his in history:
- if his["role"] == "user":
- his["content"] = self.chat_prompt(his["content"], image)
-
- response = self.client.chat.completions.create(
- model=self.model_name,
- messages=history,
- temperature=gen_conf.get("temperature", 0.3),
- top_p=gen_conf.get("top_p", 0.7),
- stream=True,
- )
- for resp in response:
- if not resp.choices[0].delta.content:
- continue
- delta = resp.choices[0].delta.content
- ans += delta
- if resp.choices[0].finish_reason == "length":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- tk_count = resp.usage.total_tokens
- if resp.choices[0].finish_reason == "stop":
- tk_count = resp.usage.total_tokens
- yield ans
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield tk_count
-
-
- class OllamaCV(Base):
- _FACTORY_NAME = "Ollama"
-
- def __init__(self, key, model_name, lang="Chinese", **kwargs):
- self.client = Client(host=kwargs["base_url"])
- self.model_name = model_name
- self.lang = lang
-
- def describe(self, image):
- prompt = self.prompt("")
- try:
- response = self.client.generate(
- model=self.model_name,
- prompt=prompt[0]["content"][1]["text"],
- images=[image],
- )
- ans = response["response"].strip()
- return ans, 128
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def describe_with_prompt(self, image, prompt=None):
- vision_prompt = self.vision_llm_prompt("", prompt) if prompt else self.vision_llm_prompt("")
- try:
- response = self.client.generate(
- model=self.model_name,
- prompt=vision_prompt[0]["content"][1]["text"],
- images=[image],
- )
- ans = response["response"].strip()
- return ans, 128
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def chat(self, system, history, gen_conf, image=""):
- if system:
- history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
-
- try:
- for his in history:
- if his["role"] == "user":
- his["images"] = [image]
- options = {}
- if "temperature" in gen_conf:
- options["temperature"] = gen_conf["temperature"]
- if "top_p" in gen_conf:
- options["top_k"] = gen_conf["top_p"]
- if "presence_penalty" in gen_conf:
- options["presence_penalty"] = gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- options["frequency_penalty"] = gen_conf["frequency_penalty"]
- response = self.client.chat(
- model=self.model_name,
- messages=history,
- options=options,
- keep_alive=-1,
- )
-
- ans = response["message"]["content"].strip()
- return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf, image=""):
- if system:
- history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
-
- for his in history:
- if his["role"] == "user":
- his["images"] = [image]
- options = {}
- if "temperature" in gen_conf:
- options["temperature"] = gen_conf["temperature"]
- if "top_p" in gen_conf:
- options["top_k"] = gen_conf["top_p"]
- if "presence_penalty" in gen_conf:
- options["presence_penalty"] = gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- options["frequency_penalty"] = gen_conf["frequency_penalty"]
- ans = ""
- try:
- response = self.client.chat(
- model=self.model_name,
- messages=history,
- stream=True,
- options=options,
- keep_alive=-1,
- )
- for resp in response:
- if resp["done"]:
- yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
- ans += resp["message"]["content"]
- yield ans
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
- yield 0
-
-
- class LocalAICV(GptV4):
- _FACTORY_NAME = "LocalAI"
-
- def __init__(self, key, model_name, base_url, lang="Chinese"):
- if not base_url:
- raise ValueError("Local cv model url cannot be None")
- base_url = urljoin(base_url, "v1")
- self.client = OpenAI(api_key="empty", base_url=base_url)
- self.model_name = model_name.split("___")[0]
- self.lang = lang
-
-
- class XinferenceCV(Base):
- _FACTORY_NAME = "Xinference"
-
- def __init__(self, key, model_name="", lang="Chinese", base_url=""):
- base_url = urljoin(base_url, "v1")
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
- self.lang = lang
-
- def describe(self, image):
- b64 = self.image2base64(image)
-
- res = self.client.chat.completions.create(model=self.model_name, messages=self.prompt(b64))
- return res.choices[0].message.content.strip(), res.usage.total_tokens
-
- def describe_with_prompt(self, image, prompt=None):
- b64 = self.image2base64(image)
- vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
-
- res = self.client.chat.completions.create(
- model=self.model_name,
- messages=vision_prompt,
- )
- return res.choices[0].message.content.strip(), res.usage.total_tokens
-
-
- class GeminiCV(Base):
- _FACTORY_NAME = "Gemini"
-
- def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs):
- from google.generativeai import GenerativeModel, client
-
- client.configure(api_key=key)
- _client = client.get_default_generative_client()
- self.model_name = model_name
- self.model = GenerativeModel(model_name=self.model_name)
- self.model._client = _client
- self.lang = lang
-
- def describe(self, image):
- from PIL.Image import open
-
- prompt = (
- "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
- if self.lang.lower() == "chinese"
- else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
- )
- b64 = self.image2base64(image)
- img = open(BytesIO(base64.b64decode(b64)))
- input = [prompt, img]
- res = self.model.generate_content(input)
- return res.text, res.usage_metadata.total_token_count
-
- def describe_with_prompt(self, image, prompt=None):
- from PIL.Image import open
-
- b64 = self.image2base64(image)
- vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
- img = open(BytesIO(base64.b64decode(b64)))
- input = [vision_prompt, img]
- res = self.model.generate_content(
- input,
- )
- return res.text, res.usage_metadata.total_token_count
-
- def chat(self, system, history, gen_conf, image=""):
- from transformers import GenerationConfig
-
- if system:
- history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
- try:
- for his in history:
- if his["role"] == "assistant":
- his["role"] = "model"
- his["parts"] = [his["content"]]
- his.pop("content")
- if his["role"] == "user":
- his["parts"] = [his["content"]]
- his.pop("content")
- history[-1]["parts"].append("data:image/jpeg;base64," + image)
-
- response = self.model.generate_content(history, generation_config=GenerationConfig(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7)))
-
- ans = response.text
- return ans, response.usage_metadata.total_token_count
- except Exception as e:
- return "**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf, image=""):
- from transformers import GenerationConfig
-
- if system:
- history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
-
- ans = ""
- try:
- for his in history:
- if his["role"] == "assistant":
- his["role"] = "model"
- his["parts"] = [his["content"]]
- his.pop("content")
- if his["role"] == "user":
- his["parts"] = [his["content"]]
- his.pop("content")
- history[-1]["parts"].append("data:image/jpeg;base64," + image)
-
- response = self.model.generate_content(
- history,
- generation_config=GenerationConfig(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7)),
- stream=True,
- )
-
- for resp in response:
- if not resp.text:
- continue
- ans += resp.text
- yield ans
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield response._chunks[-1].usage_metadata.total_token_count
-
-
- class OpenRouterCV(GptV4):
- _FACTORY_NAME = "OpenRouter"
-
- def __init__(
- self,
- key,
- model_name,
- lang="Chinese",
- base_url="https://openrouter.ai/api/v1",
- ):
- if not base_url:
- base_url = "https://openrouter.ai/api/v1"
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
- self.lang = lang
-
-
- class LocalCV(Base):
- _FACTORY_NAME = "Moonshot"
-
- def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
- pass
-
- def describe(self, image):
- return "", 0
-
-
- class NvidiaCV(Base):
- _FACTORY_NAME = "NVIDIA"
-
- def __init__(
- self,
- key,
- model_name,
- lang="Chinese",
- base_url="https://ai.api.nvidia.com/v1/vlm",
- ):
- if not base_url:
- base_url = ("https://ai.api.nvidia.com/v1/vlm",)
- self.lang = lang
- factory, llm_name = model_name.split("/")
- if factory != "liuhaotian":
- self.base_url = urljoin(base_url, f"{factory}/{llm_name}")
- else:
- self.base_url = urljoin(f"{base_url}/community", llm_name.replace("-v1.6", "16"))
- self.key = key
-
- def describe(self, image):
- b64 = self.image2base64(image)
- response = requests.post(
- url=self.base_url,
- headers={
- "accept": "application/json",
- "content-type": "application/json",
- "Authorization": f"Bearer {self.key}",
- },
- json={"messages": self.prompt(b64)},
- )
- response = response.json()
- return (
- response["choices"][0]["message"]["content"].strip(),
- response["usage"]["total_tokens"],
- )
-
- def describe_with_prompt(self, image, prompt=None):
- b64 = self.image2base64(image)
- vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
-
- response = requests.post(
- url=self.base_url,
- headers={
- "accept": "application/json",
- "content-type": "application/json",
- "Authorization": f"Bearer {self.key}",
- },
- json={
- "messages": vision_prompt,
- },
- )
- response = response.json()
- return (
- response["choices"][0]["message"]["content"].strip(),
- response["usage"]["total_tokens"],
- )
-
- def prompt(self, b64):
- return [
- {
- "role": "user",
- "content": (
- "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
- if self.lang.lower() == "chinese"
- else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
- )
- + f' <img src="data:image/jpeg;base64,{b64}"/>',
- }
- ]
-
- def vision_llm_prompt(self, b64, prompt=None):
- return [
- {
- "role": "user",
- "content": (prompt if prompt else vision_llm_describe_prompt()) + f' <img src="data:image/jpeg;base64,{b64}"/>',
- }
- ]
-
- def chat_prompt(self, text, b64):
- return [
- {
- "role": "user",
- "content": text + f' <img src="data:image/jpeg;base64,{b64}"/>',
- }
- ]
-
-
- class StepFunCV(GptV4):
- _FACTORY_NAME = "StepFun"
-
- def __init__(self, key, model_name="step-1v-8k", lang="Chinese", base_url="https://api.stepfun.com/v1"):
- if not base_url:
- base_url = "https://api.stepfun.com/v1"
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
- self.lang = lang
-
-
- class LmStudioCV(GptV4):
- _FACTORY_NAME = "LM-Studio"
-
- def __init__(self, key, model_name, lang="Chinese", base_url=""):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- self.client = OpenAI(api_key="lm-studio", base_url=base_url)
- self.model_name = model_name
- self.lang = lang
-
-
- class OpenAI_APICV(GptV4):
- _FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
-
- def __init__(self, key, model_name, lang="Chinese", base_url=""):
- if not base_url:
- raise ValueError("url cannot be None")
- base_url = urljoin(base_url, "v1")
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name.split("___")[0]
- self.lang = lang
-
-
- class TogetherAICV(GptV4):
- _FACTORY_NAME = "TogetherAI"
-
- def __init__(self, key, model_name, lang="Chinese", base_url="https://api.together.xyz/v1"):
- if not base_url:
- base_url = "https://api.together.xyz/v1"
- super().__init__(key, model_name, lang, base_url)
-
-
- class YiCV(GptV4):
- _FACTORY_NAME = "01.AI"
-
- def __init__(
- self,
- key,
- model_name,
- lang="Chinese",
- base_url="https://api.lingyiwanwu.com/v1",
- ):
- if not base_url:
- base_url = "https://api.lingyiwanwu.com/v1"
- super().__init__(key, model_name, lang, base_url)
-
-
- class SILICONFLOWCV(GptV4):
- _FACTORY_NAME = "SILICONFLOW"
-
- def __init__(
- self,
- key,
- model_name,
- lang="Chinese",
- base_url="https://api.siliconflow.cn/v1",
- ):
- if not base_url:
- base_url = "https://api.siliconflow.cn/v1"
- super().__init__(key, model_name, lang, base_url)
-
-
- class HunyuanCV(Base):
- _FACTORY_NAME = "Tencent Hunyuan"
-
- def __init__(self, key, model_name, lang="Chinese", base_url=None):
- from tencentcloud.common import credential
- from tencentcloud.hunyuan.v20230901 import hunyuan_client
-
- key = json.loads(key)
- sid = key.get("hunyuan_sid", "")
- sk = key.get("hunyuan_sk", "")
- cred = credential.Credential(sid, sk)
- self.model_name = model_name
- self.client = hunyuan_client.HunyuanClient(cred, "")
- self.lang = lang
-
- def describe(self, image):
- from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
- TencentCloudSDKException,
- )
- from tencentcloud.hunyuan.v20230901 import models
-
- b64 = self.image2base64(image)
- req = models.ChatCompletionsRequest()
- params = {"Model": self.model_name, "Messages": self.prompt(b64)}
- req.from_json_string(json.dumps(params))
- ans = ""
- try:
- response = self.client.ChatCompletions(req)
- ans = response.Choices[0].Message.Content
- return ans, response.Usage.TotalTokens
- except TencentCloudSDKException as e:
- return ans + "\n**ERROR**: " + str(e), 0
-
- def describe_with_prompt(self, image, prompt=None):
- from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException
- from tencentcloud.hunyuan.v20230901 import models
-
- b64 = self.image2base64(image)
- vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
- req = models.ChatCompletionsRequest()
- params = {"Model": self.model_name, "Messages": vision_prompt}
- req.from_json_string(json.dumps(params))
- ans = ""
- try:
- response = self.client.ChatCompletions(req)
- ans = response.Choices[0].Message.Content
- return ans, response.Usage.TotalTokens
- except TencentCloudSDKException as e:
- return ans + "\n**ERROR**: " + str(e), 0
-
- def prompt(self, b64):
- return [
- {
- "Role": "user",
- "Contents": [
- {
- "Type": "image_url",
- "ImageUrl": {"Url": f"data:image/jpeg;base64,{b64}"},
- },
- {
- "Type": "text",
- "Text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
- if self.lang.lower() == "chinese"
- else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
- },
- ],
- }
- ]
-
-
- class AnthropicCV(Base):
- _FACTORY_NAME = "Anthropic"
-
- def __init__(self, key, model_name, base_url=None):
- import anthropic
-
- self.client = anthropic.Anthropic(api_key=key)
- self.model_name = model_name
- self.system = ""
- self.max_tokens = 8192
- if "haiku" in self.model_name or "opus" in self.model_name:
- self.max_tokens = 4096
-
- def prompt(self, b64, prompt):
- return [
- {
- "role": "user",
- "content": [
- {
- "type": "image",
- "source": {
- "type": "base64",
- "media_type": "image/jpeg",
- "data": b64,
- },
- },
- {"type": "text", "text": prompt},
- ],
- }
- ]
-
- def describe(self, image):
- b64 = self.image2base64(image)
- prompt = self.prompt(
- b64,
- "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
- if self.lang.lower() == "chinese"
- else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
- )
-
- response = self.client.messages.create(model=self.model_name, max_tokens=self.max_tokens, messages=prompt)
- return response["content"][0]["text"].strip(), response["usage"]["input_tokens"] + response["usage"]["output_tokens"]
-
- def describe_with_prompt(self, image, prompt=None):
- b64 = self.image2base64(image)
- prompt = self.prompt(b64, prompt if prompt else vision_llm_describe_prompt())
-
- response = self.client.messages.create(model=self.model_name, max_tokens=self.max_tokens, messages=prompt)
- return response["content"][0]["text"].strip(), response["usage"]["input_tokens"] + response["usage"]["output_tokens"]
-
- def chat(self, system, history, gen_conf):
- if "presence_penalty" in gen_conf:
- del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- del gen_conf["frequency_penalty"]
- gen_conf["max_tokens"] = self.max_tokens
-
- ans = ""
- try:
- response = self.client.messages.create(
- model=self.model_name,
- messages=history,
- system=system,
- stream=False,
- **gen_conf,
- ).to_dict()
- ans = response["content"][0]["text"]
- if response["stop_reason"] == "max_tokens":
- ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
- return (
- ans,
- response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
- )
- except Exception as e:
- return ans + "\n**ERROR**: " + str(e), 0
-
- def chat_streamly(self, system, history, gen_conf):
- if "presence_penalty" in gen_conf:
- del gen_conf["presence_penalty"]
- if "frequency_penalty" in gen_conf:
- del gen_conf["frequency_penalty"]
- gen_conf["max_tokens"] = self.max_tokens
-
- ans = ""
- total_tokens = 0
- try:
- response = self.client.messages.create(
- model=self.model_name,
- messages=history,
- system=system,
- stream=True,
- **gen_conf,
- )
- for res in response:
- if res.type == "content_block_delta":
- if res.delta.type == "thinking_delta" and res.delta.thinking:
- if ans.find("<think>") < 0:
- ans += "<think>"
- ans = ans.replace("</think>", "")
- ans += res.delta.thinking + "</think>"
- else:
- text = res.delta.text
- ans += text
- total_tokens += num_tokens_from_string(text)
- yield ans
- except Exception as e:
- yield ans + "\n**ERROR**: " + str(e)
-
- yield total_tokens
-
-
- class GPUStackCV(GptV4):
- _FACTORY_NAME = "GPUStack"
-
- def __init__(self, key, model_name, lang="Chinese", base_url=""):
- if not base_url:
- raise ValueError("Local llm url cannot be None")
- base_url = urljoin(base_url, "v1")
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
- self.lang = lang
-
-
- class GoogleCV(Base):
- _FACTORY_NAME = "Google Cloud"
-
- def __init__(self, key, model_name, lang="Chinese", base_url=None, **kwargs):
- import base64
-
- from google.oauth2 import service_account
-
- key = json.loads(key)
- access_token = json.loads(base64.b64decode(key.get("google_service_account_key", "")))
- project_id = key.get("google_project_id", "")
- region = key.get("google_region", "")
-
- scopes = ["https://www.googleapis.com/auth/cloud-platform"]
- self.model_name = model_name
- self.lang = lang
-
- if "claude" in self.model_name:
- from anthropic import AnthropicVertex
- from google.auth.transport.requests import Request
-
- if access_token:
- credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
- request = Request()
- credits.refresh(request)
- token = credits.token
- self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token)
- else:
- self.client = AnthropicVertex(region=region, project_id=project_id)
- else:
- import vertexai.generative_models as glm
- from google.cloud import aiplatform
-
- if access_token:
- credits = service_account.Credentials.from_service_account_info(access_token)
- aiplatform.init(credentials=credits, project=project_id, location=region)
- else:
- aiplatform.init(project=project_id, location=region)
- self.client = glm.GenerativeModel(model_name=self.model_name)
-
- def describe(self, image):
- prompt = (
- "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
- if self.lang.lower() == "chinese"
- else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
- )
-
- if "claude" in self.model_name:
- b64 = self.image2base64(image)
- vision_prompt = [
- {
- "role": "user",
- "content": [
- {
- "type": "image",
- "source": {
- "type": "base64",
- "media_type": "image/jpeg",
- "data": b64,
- },
- },
- {"type": "text", "text": prompt},
- ],
- }
- ]
- response = self.client.messages.create(
- model=self.model_name,
- max_tokens=8192,
- messages=vision_prompt,
- )
- return response.content[0].text.strip(), response.usage.input_tokens + response.usage.output_tokens
- else:
- import vertexai.generative_models as glm
-
- b64 = self.image2base64(image)
- # Create proper image part for Gemini
- image_part = glm.Part.from_data(data=base64.b64decode(b64), mime_type="image/jpeg")
- input = [prompt, image_part]
- res = self.client.generate_content(input)
- return res.text, res.usage_metadata.total_token_count
-
- def describe_with_prompt(self, image, prompt=None):
- if "claude" in self.model_name:
- b64 = self.image2base64(image)
- vision_prompt = [
- {
- "role": "user",
- "content": [
- {
- "type": "image",
- "source": {
- "type": "base64",
- "media_type": "image/jpeg",
- "data": b64,
- },
- },
- {"type": "text", "text": prompt if prompt else vision_llm_describe_prompt()},
- ],
- }
- ]
- response = self.client.messages.create(model=self.model_name, max_tokens=8192, messages=vision_prompt)
- return response.content[0].text.strip(), response.usage.input_tokens + response.usage.output_tokens
- else:
- import vertexai.generative_models as glm
-
- b64 = self.image2base64(image)
- vision_prompt = prompt if prompt else vision_llm_describe_prompt()
- # Create proper image part for Gemini
- image_part = glm.Part.from_data(data=base64.b64decode(b64), mime_type="image/jpeg")
- input = [vision_prompt, image_part]
- res = self.client.generate_content(input)
- return res.text, res.usage_metadata.total_token_count
-
- def chat(self, system, history, gen_conf, image=""):
- if "claude" in self.model_name:
- if system:
- history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
- try:
- for his in history:
- if his["role"] == "user":
- his["content"] = [
- {
- "type": "image",
- "source": {
- "type": "base64",
- "media_type": "image/jpeg",
- "data": image,
- },
- },
- {"type": "text", "text": his["content"]},
- ]
-
- response = self.client.messages.create(model=self.model_name, max_tokens=8192, messages=history, temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7))
- return response.content[0].text.strip(), response.usage.input_tokens + response.usage.output_tokens
- except Exception as e:
- return "**ERROR**: " + str(e), 0
- else:
- import vertexai.generative_models as glm
- from transformers import GenerationConfig
-
- if system:
- history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
- try:
- for his in history:
- if his["role"] == "assistant":
- his["role"] = "model"
- his["parts"] = [his["content"]]
- his.pop("content")
- if his["role"] == "user":
- his["parts"] = [his["content"]]
- his.pop("content")
-
- # Create proper image part for Gemini
- img_bytes = base64.b64decode(image)
- image_part = glm.Part.from_data(data=img_bytes, mime_type="image/jpeg")
- history[-1]["parts"].append(image_part)
-
- response = self.client.generate_content(history, generation_config=GenerationConfig(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7)))
-
- ans = response.text
- return ans, response.usage_metadata.total_token_count
- except Exception as e:
- return "**ERROR**: " + str(e), 0
|