| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- from abc import ABC
- from api.db import LLMType
- from api.db.services.llm_service import LLMBundle
- from agent.component import GenerateParam, Generate
- from rag.utils import num_tokens_from_string, encoder
-
-
- class RelevantParam(GenerateParam):
-
- """
- Define the Relevant component parameters.
- """
- def __init__(self):
- super().__init__()
- self.prompt = ""
- self.yes = ""
- self.no = ""
-
- def check(self):
- super().check()
- self.check_empty(self.yes, "[Relevant] 'Yes'")
- self.check_empty(self.no, "[Relevant] 'No'")
-
- def get_prompt(self):
- self.prompt = """
- You are a grader assessing relevance of a retrieved document to a user question.
- It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
- If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
- Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
- No other words needed except 'yes' or 'no'.
- """
- return self.prompt
-
-
- class Relevant(Generate, ABC):
- component_name = "Relevant"
-
- def _run(self, history, **kwargs):
- q = ""
- for r, c in self._canvas.history[::-1]:
- if r == "user":
- q = c
- break
- ans = self.get_input()
- ans = " - ".join(ans["content"]) if "content" in ans else ""
- if not ans:
- return Relevant.be_output(self._param.no)
- ans = "Documents: \n" + ans
- ans = f"Question: {q}\n" + ans
- chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
-
- if num_tokens_from_string(ans) >= chat_mdl.max_length - 4:
- ans = encoder.decode(encoder.encode(ans)[:chat_mdl.max_length - 4])
-
- ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": ans}],
- self._param.gen_conf())
-
- print(ans, ":::::::::::::::::::::::::::::::::")
- if ans.lower().find("yes") >= 0:
- return Relevant.be_output(self._param.yes)
- if ans.lower().find("no") >= 0:
- return Relevant.be_output(self._param.no)
- assert False, f"Relevant component got: {ans}"
-
|